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Are Neural Networks Robustness?
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Small perturbations on the input can cause neural networks to yield incorrect output.

1Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR'15

2Gnanasambandam et al., Optical Adversarial Attack, CVPR'21

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 2/25



Are Neural Networks Robustness?

NG
CAT adversarial " L
perturbation . STOP Sign Illumination Speed 30 !? ,
Label:
8
Perturbed input X € @ : {X | ||X—X||oc < €},
Neural Network 87

To check f(X) 0.

Small perturbations on the input can cause neural networks to yield incorrect output.

1Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR'15

2Gnanasambandam et al., Optical Adversarial Attack,CVPR'21

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 3/25



Over-Approximation for Neural Network Verification
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Over-Approximation for Neural Network Verification
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Lowerbound p = min O, computed by LPSolver(PAfAT)

p = —2.7 obtained by conservative over-approximation of

active functions (i.e., ReLU) via linear solver and can be

imprecise (incomplete) and may produce a false alarm,

I u e., p! =! — 2.7 is a spurious value that never occurs
DeepPoly? during runtime.

3Singh et al., Abstract Domain and Analysis for ReLU Neural Networks, POPL'19
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Branch-and-Bound-Based Approach (Bunel+, JMLR’20)
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¢ The branch-and-bound? aims to achieve
ideal precise verification by dividing a
problem into subproblems (branch) and
eliminating those that cannot lead to an
optimal solution (bound)

Fhttps://en.wikipedia.org/wiki/Branch_and_bound
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Branch-and-Bound-Based Approach (Bunel+, JMLR’20)
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Branch-and-Bound (BaB) Tree
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Counterexample-Guided Verification
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¢ Counterexamples, i.e.,

True Counterexample

problem spaces via BaB trees, enabling early termination.

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
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Counterexample-Guided Verification
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True Counterexample
¢ Counterexamples, i.e., inputs violating specifications, can be found in partitioned
problem spaces via BaB trees, enabling early termination.

¢ Efficiently Finding counterexamples is the key to scalable NN verification!

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
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Counterexample-Guided Verification
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True Counterexample
¢ Counterexamples, i.e., inputs violating specifications, can be found in partitioned
problem spaces via BaB trees, enabling early termination.
¢ Efficiently Finding counterexamples is the key to scalable NN verification!

* Conventional BaB algorithm® (breadth-first search) can be inefficient

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20
Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
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Counterexample-Guided Verification
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True Counterexample
¢ Counterexamples, i.e., inputs violating specifications, can be found in partitioned
problem spaces via BaB trees, enabling early termination.

Efficiently Finding counterexamples is the key to scalable NN verification!

Conventional BaB algorithm® (breadth-first search) can be inefficient
* Potentiality of counterexample existence can be inferred by two attributes*:

@ Tree nodes (output lower bound p) with smaller values.
@ Tree node's depth with deeper level.

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20
Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
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MCTS-Based Method (Fukuda+,

DATE’25)
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True Counterexample

¢ (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)

4

Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
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¢ (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)

* Compute Rewards* (counterexample potentiality (CePO)) of subproblems:
—00 ifp>0
+oo true CE

AL (1 - )\)p%_n otherwise

[r] =

4Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
ECOOP'25
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MCTS-Based Method (Fukuda+, DATE’25)
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¢ (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)
* Compute Rewards* (counterexample potentiality (CePO)) of subproblems:
—00 ifp>0
[r] = 400 true CE
AL (1 - )\)p%_n otherwise

¢ (Fukuda+, DATE'25) outperforms naive BaB (breadth-first search) approach

4Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
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Limitations and Motivations

MCTS-based approach (Fukuda+, DATE'25) is deterministic:

If this MCTS failed to find a counterexample, repeating the same run is meaningless
and it does not give a different answer.

Inferring counterexamples (MCTS rewards) is a heuristic method, and it may fail to
provide accurate guidance frequently.

This work is a stochastic optimization-based approach
Counterexample finding through an effective optimization-based sampling, e.g., hill
climbing (HC), simulated annealing (SA)
Repeated runs with different seeds can explore the tree in different ways.
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® We propose Oliva that adopts
stochastic optimization for neural
network verification
@ Oliva®®: a greedy approach
@ Oliva®: simulated annealing
(SA)-style approach

* Oliva* is achieved by identifying and
extending two relations:
@ Relation between Oliva®® and classic
hill climbing
@® Relation between classic simulated
annealing and classic hill climbing
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Greedy Approach (Oliva®?)
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Oliva® is inspired by (Fukuda+,DATE'25)

® Driven by Greediness, we directly select deeper and smaller ones, until the
subproblem is verified;
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Counterexample

Oliva®? is inspired by (Fukuda-+, DATE'25)

® Driven by Greediness, we directly select deeper and smaller ones, until the

subproblem is verified;

Oliva®®
Greedy BaB

* Oliva®® may fail to find a counterexample (even if it exists)

® “CePOQ" order is a heuristic, but not always promising.
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Connection Between Hill Climbing and Oliva®®
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Hill Climbing
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¢ Hill Climbing samples and optimizes within a continuous box domain, gradually
converging to a local optimum.
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Connection Between Hill Climbing and Oliva®®

Classic
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¢ Hill Climbing optimizes within a continuous box domain by sampling, gradually
converging to a local optimum.

* Oliva®® works on a tree structure to select the subproblems.
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Connection Between Hill Climbing and Oliva®®
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® Connection: action of accepting better candidates.

* Oliva®®: accept only good child nodes
® Hill climbing: accept only good samples

® We build the edge between the two that shares the same “greedily accept” policy.
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Issues of Hill Climbing and Oliva®®
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® The issues are also essentially the same:

® Hill climbing can be trapped in local optima and lose the global optimum;
* Oliva®® can be misled by the heuristic order, resulting in suboptimal performance
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Classic Simulated Annealing (SA)
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® In stochastic optimization, SA is a solution to “local optima” issue of hill climbing;
® Compared to hill climbing, it assigns a probability to accept a worse sample;
® The probability keeps evolving over the process, controlled by temperature

® At initial stage, temperature is high, SA favors exploration;
® Later, temperature becomes low, SA favors exploitation.
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Our Proposed Oliva> Approach
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* Oliva® extends the accept policy of classic SA to tree structures
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* Oliva™ extends the accept policy of classic SA to tree structures

® At initial stage, temperature is high, so it favors exploration
® Later, temperature becomes low, so it favors exploitation
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Our Proposed Oliva> Approach
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Comparison with (Fukuda+, DATE’25)

Major technical differences
Monte Carlo Tree Search (i.e., MCTS in Fukuda+, DATE’'25) originally deals with
tree structures, so the application to BaB is relatively straightforward
Simulated Annealing (SA and general stochastic optimization algorithms)
originally deals with box domains, so the application to BaB requires a novel way of
adaptation in this work.

Regarding verification effectiveness
MCTS involves a fixed policy of tree exploration; repeating the same run does not
give a different answer.
Oliva® is stochastic, so repeating experimental runs is useful to find
counterexamples

Guangin.Zhang@unsw.edu.au _



Experiment Settings

Model Architecture Dataset  #Activations # Instances #lmages
MNIST,, 2 x 256 linear MNIST 512 100 70
MNISTLa 4 x 256 linear MNIST 1024 78 52
OVAL21gsg 2 Conv, 2 linear CIFAR-10 3172 173 53
OVAL21yme 2 Conv, 2 linear CIFAR-10 6244 196 53
OVAL21peee 4 Conv, 2 linear CIFAR-10 6756 143 40
4 FoIIowing VNN-COMP?2: - NIST

® 690 instance across MNIST,

CIFAR-10, with five different models.

® Local robustness with
€ € [1/255,16/255]

® Meaningful sub-problem selection.

2Miiller et al., arXiv preprint arXiv:2212.10376.
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Experiment Results |

Speed-up Ratio (BaB-baseline/Oliva)
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® Each point is a verification problem
® x-axis: time costs by BaB-baseline
® y-axix: our speedup over BaB-baseline

® Points over the dashed red line are faster than
BaB-baseline.
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Experiments on Stochasticity of Oliva™*
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Summary and Research Opportunities

® We propose Oliva, a metaheuristic optimization tool:
® Oliva®®: Greedily driven by Potentiality, generalize “acceptance” in “hill-climbing”
optimization.
@ Oliva*: Simulated annealing mitigates the “greediness” of “hill-climbing” as a
stochastic optimization.

® Other directions and our ongoing work for counterexample-guided NN verification

@ Scalable incremental falsification of neural networks given a similar NN architecture
and existing verification results.
@ Efficient verification of the Transformer architecture and large language models.

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 _



	

