Efficient Neural Network Verification via Order
Leading Exploration of Branch-and-Bound Trees

Guangin Zhang1'2, Kota Fukuda3, Zhenya Zhang3, Dilum Bandaral?, Shiping
Chen'?, Jianjun Zhao3, Yulei Suil

LUniversity of New South Wales, Sydney, Australia
2CSIRO’s Databl, Australia
3Kyushu University, Fukuoka, Japan

Guangin.Zhang@unsw.edu.au

Are Neural Networks Robustness?

adversarial

perturbation D 1 STOP Slgn

Label:

8

Neural Network

Small perturbations on the input can cause neural networks to yield incorrect output.

1Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR'15

2Gnanasambandam et al., Optical Adversarial Attack, CVPR'21

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 2/25

Are Neural Networks Robustness?

NG
CAT adversarial " L
perturbation . STOP Sign Illumination Speed 30 !? ,
Label:
8
Perturbed input X € @ : {X | ||X—X||oc < €},
Neural Network 87

To check f(X) 0.

Small perturbations on the input can cause neural networks to yield incorrect output.

1Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR'15

2Gnanasambandam et al., Optical Adversarial Attack,CVPR'21

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 3/25

Over-Approximation for Neural Network Verification

Specification A U |Input: ®:=1z,€[0,1] Azy €[0,1]

Output: ¥ = (O > 0) |

2 ReLU
01 T —>» —
T
Network N
etworl
f ;
2 ReLU
0,1 Ty —=» —
T2
Y

—_ '——b'l‘

RelLU Activation function.

Guangin.Zhang@unsw.edu.au

2 ReLU .
T3 % ll\ 7
4
2 o) /" [0) {
AR RN
0.6 /v s N
ReLU 4
3 e 0.5 v
T4
ECOOP'25 - July 02, 2025

Over-Approximation for Neural Network Verification

Ideal
Specification & A U Input: @ :=a, € [0,1] Azs € [0,1] Output: ¥ = (O > 0) Overapproximation

2 _ReLU _ 2 ReLU
[0,1] T3 —» —> - >

1 T3
3 2
Network f >< 0(><
ReLU ReLU False

E o.s
01 T2 — H A — > a1 Alarm

Lowerbound p = min O, computed by LPSolver(PAfAT)

p = —2.7 obtained by conservative over-approximation of

active functions (i.e., ReLU) via linear solver and can be

imprecise (incomplete) and may produce a false alarm,

I u e., p! =! — 2.7 is a spurious value that never occurs
DeepPoly? during runtime.

3Singh et al., Abstract Domain and Analysis for ReLU Neural Networks, POPL'19

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 _

Branch-and-Bound-Based Approach (Bunel+, JMLR’20)

Specification: ® A U Input: ®:=21 € [-1,1]Axz € [-1,1] Output: ¥ = (O > 0)

2 ReLU
1.1 T1 —=— — 47
T

_2
r3 .
Network: f ><: o->< > (0]
ReLU

R 3 ReLU 0.5
[-1,1] L3 —» — —> —_—>

T2 Ta

ReLU

— ; .
1 U 'l u
Precise spliting ReLU 7”1 Over-approximations for ReLUs 72 7'3 T4

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

https://en.wikipedia.org/wiki/Branch_and_bound

Branch-and-Bound-Based Approach (Bunel+, JMLR’20)

Specification: & A ¥
L -2 -

Network: f

1 u ‘l fu
Precise spliting ReLU 71 Over-approximations for ReLUs 72 '3 T4

Guangin.Zhang@unsw.edu.au

Input: ® =z € [-1,1] Az € [-1,1]

Output: ¥ = (0 > 0)

ReLU

ReLU
—

<,

2
T T3
2
0]
06 /v
ReLU 3 ReLU 05
e —2 —

T2 Ta

¢ The branch-and-bound? aims to achieve
ideal precise verification by dividing a
problem into subproblems (branch) and
eliminating those that cannot lead to an
optimal solution (bound)

Fhttps://en.wikipedia.org/wiki/Branch_and_bound

ECOOP'25 - July 02, 2025

https://en.wikipedia.org/wiki/Branch_and_bound

Branch-and-Bound-Based Approach (Bunel+, JMLR’20)

Specification: & A ¥
(1) T —2

Network: f

1 u ‘l fu
Precise spliting ReLU 7”1 Over-approximations for ReLUs 72 7'3 T4

27 7.7 27
bl 252265 |p| 252 285

o dacintd

sup Sepz o0
T s Comarario

Guangin.Zhang@unsw.edu.au

Input: ® =z € [-1,1] Az € [-1,1]

Output: ¥ = (0 > 0)

ReLU

ReLU
—

<,

2
T T3
2
0]
06 /v
ReLU 3 ReLU 05
e —2 —

T2 Ta

¢ The branch-and-bound? aims to achieve
ideal precise verification by dividing a
problem into subproblems (branch) and
eliminating those that cannot lead to an
optimal solution (bound)

Fhttps://en.wikipedia.org/wiki/Branch_and_bound

ECOOP'25 - July 02, 2025

https://en.wikipedia.org/wiki/Branch_and_bound

Branch-and-Bound-Based Approach (Bunel+, JMLR’20)

Specification: ® A U Input: ®:=21 € [-1,1]Axz € [-1,1] Output: ¥ = (O > 0)

ReLU ReLU
—_— —

1,1 21 L»

2
T1 T3 %
-3 -2
Network: f 0]
1 0.6 /v
ReLU 3 ReLU 05
_— —= —

T2 Ta

¢ The branch-and-bound? aims to achieve
ideal precise verification by dividing a
problem into subproblems (branch) and
eliminating those that cannot lead to an
optimal solution (bound)

1 u ‘l fu
Precise spliting ReLU 7”1 Over-approximations for ReLUs 72 7'3 T4

Fhttps://en.wikipedia.org/wiki/Branch_and_bound

27 =27 =27
J\ Y\

M == M “{:i;:l:i? ® Split activation ReLU ry input into r{ (x1 > 0) and r{ (x1 < 0).

s s Foa ° Split activation ReLU ry input into ri (x2 > 0) and r; (x2 < 0).

Branch-and-Bound (BaB) Tree
Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 _

https://en.wikipedia.org/wiki/Branch_and_bound

Counterexample-Guided Verification

-2.7 -2.7 -2.7
Jo || S
-2.52 -2.65 == -2.52 -2.65
7”2 T; 7”2 \
0.23 0 750.24 %
Step 1 Step 2 Step 3 &

¢ Counterexamples, i.e.,

True Counterexample

problem spaces via BaB trees, enabling early termination.

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

Guangin.Zhang@unsw.edu.au

ECOOP'25 - July 02, 2025

inputs violating specifications, can be found in partitioned

Counterexample-Guided Verification

2.7 -2.7 -2.7
/i A\
-2.52 -2.65 o -2.52 -2.65
YN
0.230.750.24 -%
Step 1 Step 2 Step 3 &

True Counterexample
¢ Counterexamples, i.e., inputs violating specifications, can be found in partitioned
problem spaces via BaB trees, enabling early termination.

¢ Efficiently Finding counterexamples is the key to scalable NN verification!

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

Guangin.Zhang@unsw.edu.au

ECOOP'25 - July 02, 2025

Counterexample-Guided Verification

2.7 2.7 ' 2.7

£ N\
| 252 265 |gp| 252 265
7”2 T; 7”2 \
0.23 0 750.24 %
Step 1 ! Step 2) Step 3 z
True Counterexample
¢ Counterexamples, i.e., inputs violating specifications, can be found in partitioned
problem spaces via BaB trees, enabling early termination.
¢ Efficiently Finding counterexamples is the key to scalable NN verification!

* Conventional BaB algorithm® (breadth-first search) can be inefficient

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20
Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Counterexample-Guided Verification

2.7 2.7 ' 2.7

Y\ N\
Wl 252 265 || 252 265
7”2 T; 7”2 \
0.23 0 750.24 %
Step 1 ! Step 2 | Step 3 z
True Counterexample
¢ Counterexamples, i.e., inputs violating specifications, can be found in partitioned
problem spaces via BaB trees, enabling early termination.

Efficiently Finding counterexamples is the key to scalable NN verification!

Conventional BaB algorithm® (breadth-first search) can be inefficient
* Potentiality of counterexample existence can be inferred by two attributes*:

@ Tree nodes (output lower bound p) with smaller values.
@ Tree node's depth with deeper level.

5Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20
Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

MCTS-Based Method (Fukuda+,

DATE’25)

2.7 -2.7 -2.7
/X A\
-2.52 -2.65 o -2.52 -2.65
YN
0.230.750.24 -%
Step 1 Step 2 Step 3 &

True Counterexample

¢ (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)

4

Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

Guangin.Zhang@unsw.edu.au

ECOOP'25 - July 02, 2025

MCTS-Based Method (Fukuda+,

DATE’25)

2.7

Step 1

Ay

»| 252 265

Step 2

~

-2.7

A\

-2.52 -2.65

TN

0.230.750.24
Step 3

z

True Counterexample

¢ (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)

* Compute Rewards* (counterexample potentiality (CePO)) of subproblems:
—00 ifp>0
+oo true CE

AL (1 -)\)p%_n otherwise

[r] =

4Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25
ECOOP'25

Guangin.Zhang@unsw.edu.au July 02, 2025

MCTS-Based Method (Fukuda+, DATE’25)

2.7 2.7 ' 2.7
N YN
N 252 -2.65 | 252 -2.65

” T;” \?:(

0.23 0 750.24
Step 1 Step 2 | Step 3 z
True Counterexample

¢ (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)
* Compute Rewards* (counterexample potentiality (CePO)) of subproblems:
—00 ifp>0
[r] = 400 true CE
AL (1 -)\)p%_n otherwise

¢ (Fukuda+, DATE'25) outperforms naive BaB (breadth-first search) approach

4Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Limitations and Motivations

MCTS-based approach (Fukuda+, DATE'25) is deterministic:

If this MCTS failed to find a counterexample, repeating the same run is meaningless
and it does not give a different answer.

Inferring counterexamples (MCTS rewards) is a heuristic method, and it may fail to
provide accurate guidance frequently.

This work is a stochastic optimization-based approach
Counterexample finding through an effective optimization-based sampling, e.g., hill
climbing (HC), simulated annealing (SA)
Repeated runs with different seeds can explore the tree in different ways.

Guangin.Zhang@unsw.edu.au _

Contribution

Classic

Hill Climbing

A
Greedy-Accept()

\J
Oliva®"

Greedy BaB

Guangin.Zhang@unsw.edu.au

Box Space
(Continuous)

Subprobem Space
(Tree Structure)

Classic
Simulated annealing

SA-Accept()

\ 4

Oliva®“
SA-style BaB

® We propose Oliva that adopts
stochastic optimization for neural
network verification
@ Oliva®®: a greedy approach
@ Oliva®: simulated annealing
(SA)-style approach

* Oliva* is achieved by identifying and
extending two relations:
@ Relation between Oliva®® and classic
hill climbing
@® Relation between classic simulated
annealing and classic hill climbing

ECOOP'25 - July 02, 2025 "

Greedy Approach (Oliva®?)

-2.7 -2.7

r;/ \:r
Lyl 252 265 OlivaCF
f Greedy BaB

CePO Order

Step 1) Step 2

Oliva® is inspired by (Fukuda+,DATE'25)

® Driven by Greediness, we directly select deeper and smaller ones, until the
subproblem is verified;

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Greedy Approach (Oliva

GR)

-2.7 2.7 2.7
/\ J\
-2.52 -2.65 P -2.52 -2.65
N
CePO Order 0.24 _%
Step 1 Step 2 Step 3)

Counterexample

Oliva®? is inspired by (Fukuda-+, DATE'25)

® Driven by Greediness, we directly select deeper and smaller ones, until the

subproblem is verified;

Oliva®®
Greedy BaB

* Oliva®® may fail to find a counterexample (even if it exists)

® “CePOQ" order is a heuristic, but not always promising.

Guangin.Zhang@unsw.edu.au

ECOOP'2¢

Connection Between Hill Climbing and Oliva®®

Classic
Hill Climbing

>
—»

¢ Hill Climbing samples and optimizes within a continuous box domain, gradually
converging to a local optimum.

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Connection Between Hill Climbing and Oliva®®

Classic
Hill Climbing

-2.7
- +
r r
1/ \1 Oliva®®
_2-52 '2.65 Greedy BaB

¢ Hill Climbing optimizes within a continuous box domain by sampling, gradually
converging to a local optimum.

* Oliva®® works on a tree structure to select the subproblems.

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Connection Between Hill Climbing and Oliva®®

Classic
Hill Climbing

A A

‘2 o 7 Greedy-Accept()
- +
r r
1/ \ ' l Oliva®® l
_2-52 _2.65 Greedy BaB

CePO Order

J

® Connection: action of accepting better candidates.

* Oliva®®: accept only good child nodes
® Hill climbing: accept only good samples

® We build the edge between the two that shares the same “greedily accept” policy.

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Issues of Hill Climbing and Oliva®®

Classic
Hill Climbing
2 7) A
A Global Optimal r— / y+ Greedy-Accept()
\ 1 1
Local Optimal \ A B

-2.52 -2.65 OlivaCE
ArJr rQl\ Greedy BaB

-2 0.24 024 -2

T3 / *7"3

02 15

% Counterexample

® The issues are also essentially the same:

® Hill climbing can be trapped in local optima and lose the global optimum;
* Oliva®® can be misled by the heuristic order, resulting in suboptimal performance

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Classic Simulated Annealing (SA)

Classic Classic
-«
Hill Climbing Box Space |Simulated annealing|
(Continuous)

A Global Optimal . Global Optimal

Local Optimal Local Optimal

® In stochastic optimization, SA is a solution to “local optima” issue of hill climbing;
® Compared to hill climbing, it assigns a probability to accept a worse sample;
® The probability keeps evolving over the process, controlled by temperature

® At initial stage, temperature is high, SA favors exploration;
® Later, temperature becomes low, SA favors exploitation.

Guangin.Zhang®@unsw.edu.au ECOOP'25 - July 02, 2025 a7/

Our Proposed Oliva> Approach

/‘4 . 6\ ‘4 6\ l Classic I
Simulated annealing

4.3 45 = 45 i

SA-Accept()

A/

Subprobem Space
. .GR Tree Struct s ASA
Oliva | Teestvewe) f QOliva
Greedy BaB SA-style BaB

While T <o -T

Ap + exp (7"“" R(F‘a);';"’x R(F’a)) st.ae{rf,r;}
randomly choose i or r; if rand(0,1) < Ap 4 |
N) e e S RS e P, 4
" T'-a" st 0" < 7310 max R(T - a) otherwise
ae{r: e}

* Oliva® extends the accept policy of classic SA to tree structures

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 18/25

Our Proposed Oliva> Approach

/‘4 . 6\ ‘4 . 6\ l Classic I
Simulated annealing

4.3 45 = 45 i

SA-Accept()

A/

Subprobem Space
. .GR Tree Struct s ASA
Oliva oSt - Oliva
Greedy BaB SA-style BaB

While T < o - T
Ap + exp (7"“" R(F‘“);';"’x R(F’a)) st.ae{rf,r;}
randomly choose i or r; if rand(0,1) < Ap 4 |
. e o = R Tk 4
" T'-a" st 0" < 7310 max R(T - a) otherwise
ae{rkf e}

* Oliva® extends the accept policy of classic SA to tree structures
® At initial stage, temperature is high, so it favors exploration

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 18/25

Our Proposed Oliva> Approach

-4_6 /—4.6\ l Classic I
Simulated annealing
/ \ -4.3

43 45 = 4.5 !

K . SA-Accept()
\

'21 -28 GR Subprobem Space sA
Oliva | Teestvewe) f QOliva
Greedy BaB SA-style BaB

st.ae{rf,r}

While T <+ «-T
AP + exp (min R(F»a);max R(I‘~a))

randomly choose r; or r; if rand(0,1) < Ap/

I'*«T-a* st. a* arg max R([-a) otherwise |
ae(v‘:,r;} |

* Oliva™ extends the accept policy of classic SA to tree structures

® At initial stage, temperature is high, so it favors exploration
® Later, temperature becomes low, so it favors exploitation

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 19/25

Our Proposed Oliva> Approach

/-46\‘ / \ i |$ZSSiC li
lSImuu unnealngl

s e — @6 @ f

K SA-Accept()
\

'2 . 1 m GR Subprobem Space sA
Oliva | (Teesteve) - Oliva
1 0 Greedy BaB SA-style BaB

st.ae{rf,r}

While T+ a-T

Ap +— exp (min R(F-a);max R(F-a))

randomly choose i or r; if rand(0,1) < Ap*

| arg max R(I" - a) otherwise
ae(r:,r;) |

I« T-a* st. a*

* Oliva™ extends the accept policy of classic SA to tree structures

® At initial stage, temperature is high, so it favors exploration
® Later, temperature becomes low, so it favors exploitation

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 . 20/25

Comparison with (Fukuda+, DATE’25)

Major technical differences
Monte Carlo Tree Search (i.e., MCTS in Fukuda+, DATE’'25) originally deals with
tree structures, so the application to BaB is relatively straightforward
Simulated Annealing (SA and general stochastic optimization algorithms)
originally deals with box domains, so the application to BaB requires a novel way of
adaptation in this work.

Regarding verification effectiveness
MCTS involves a fixed policy of tree exploration; repeating the same run does not
give a different answer.
Oliva® is stochastic, so repeating experimental runs is useful to find
counterexamples

Guangin.Zhang@unsw.edu.au _

Experiment Settings

Model Architecture Dataset #Activations # Instances #lmages
MNIST,, 2 x 256 linear MNIST 512 100 70
MNISTLa 4 x 256 linear MNIST 1024 78 52
OVAL21gsg 2 Conv, 2 linear CIFAR-10 3172 173 53
OVAL21yme 2 Conv, 2 linear CIFAR-10 6244 196 53
OVAL21peee 4 Conv, 2 linear CIFAR-10 6756 143 40
4 FoIIowing VNN-COMP?2: - NIST

® 690 instance across MNIST,

CIFAR-10, with five different models.

® Local robustness with
€ € [1/255,16/255]

® Meaningful sub-problem selection.

2Miiller et al., arXiv preprint arXiv:2212.10376.

Guangin.Zhang@unsw.edu.au

50

Number of problem instances

25

o

MNIST,q

) OVAL21gsse
I OVAL2 1pger
B OVAL21yine

EF-

— .
0-10 11-50 51-100 101-200 201-500 501-1000
Number of nodes in BaB trees
ECOOP'25 - July 02, 2025

Experiment Results |

Speed-up Ratio (BaB-baseline/Oliva)

25

20

15

10

Method
e Oliva®® s
Oliva™*
---- Ratio=1
L)
L]
i ‘
l‘i
e @
§- o8-
0 200 400 600 800 1000
Time(s)

MNIST-L2 by 100 problem instances

Guangin.Zhang@unsw.edu.au

® Each point is a verification problem
® x-axis: time costs by BaB-baseline
® y-axix: our speedup over BaB-baseline

® Points over the dashed red line are faster than
BaB-baseline.

ECOOP'25 - July 02, 2025

Experiments on Stochasticity of Oliva™*

§§ Slalal el s K §§ 7 2 2 0o o 1 3 1 0 o o
35 8?8 3 10 1 o o 35 Y s 11 1 o 1 6 10 2 o 1
g: psli} 7 4 1 o 1 g: 114 g} 1 1] 1 5 4 1] 1
- o - JONONONE < | - | - JONONO Q) - JONON ® QOverall, the performance of
2822 0 o o o o 21 0o 0o o o o o 0 o o o . SA . .
&S R gt ey ”iﬁis@” Oliva™ is stable;
Tme ® \We observe such cases:

while by one run we cannot
find counterexamples, by

PR repeating the same run with
ojejoje different seeds, we manage
olololc .
e to find counterexamples.
S &‘”@@“i@”"
Time

(d) SA attempt 4 (e) SA attempt 5

Performances of 5 different runs of Oliva™

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 _

Summary and Research Opportunities

® We propose Oliva, a metaheuristic optimization tool:
® Oliva®®: Greedily driven by Potentiality, generalize “acceptance” in “hill-climbing”
optimization.
@ Oliva*: Simulated annealing mitigates the “greediness” of “hill-climbing” as a
stochastic optimization.

® Other directions and our ongoing work for counterexample-guided NN verification

@ Scalable incremental falsification of neural networks given a similar NN architecture
and existing verification results.
@ Efficient verification of the Transformer architecture and large language models.

Guangin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 _

	

