Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees

Guanqin Zhang^{1,2}, Kota Fukuda³, Zhenya Zhang³, Dilum Bandara^{1,2}, Shiping Chen^{1,2}, Jianjun Zhao³, Yulei Sui¹

¹University of New South Wales, Sydney, Australia ²CSIRO's Data61, Australia ³Kyushu University, Fukuoka, Japan

<ロ > < 個 > < 重 > < 重 > 、 重 ・ 勿 へ の

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 1/ 25

Are Neural Networks Robustness?

Small perturbations on the input can cause neural networks to yield incorrect output.

Neural Network

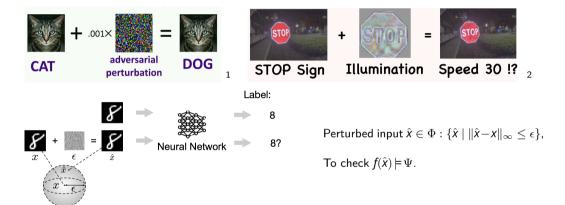
Guangin. Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 2/25

4 m > 4 m > 4 m > 4 m > 4 m > 4

Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR'15

 $^{^{2}{\}sf Gnanasambandam\ et\ al.,\ Optical\ Adversarial\ Attack,\ CVPR'21}$

Are Neural Networks Robustness?



Small perturbations on the input can cause neural networks to yield **incorrect output**.

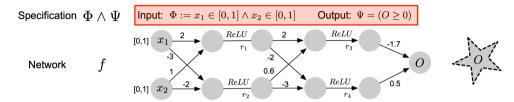
ECOOP'25 - July 02, 2025 3/ 25

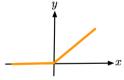
4 D > 4 B > 4 B > 4 B >

Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR'15

 $^{^{2}{\}sf Gnanasambandam\ et\ al.,\ Optical\ Adversarial\ Attack, CVPR'21}$

Over-Approximation for Neural Network Verification

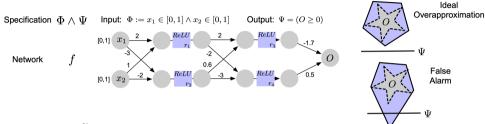


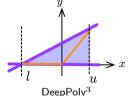


ReLU Activation function.

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 4/ 25

Over-Approximation for Neural Network Verification

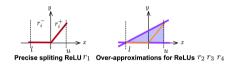




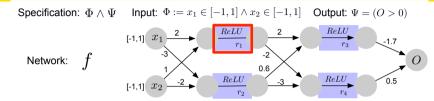
Lowerbound $\hat{p} = \min O$, computed by LPSolver $(\Phi \land f \land \Psi)$ $\hat{p} = -2.7$ obtained by conservative over-approximation of active functions (i.e., ReLU) via linear solver and can be 3 imprecise (incomplete) and may produce a false alarm, i.e., $\hat{p}! = ! -2.7$ is a spurious value that never occurs during runtime.

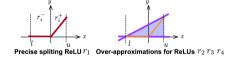
イロト (個) (注) (注) (注) りく()

³Singh et al., Abstract Domain and Analysis for ReLU Neural Networks, POPL'19



6/25

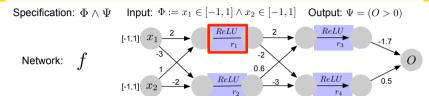


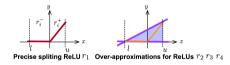


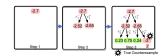
• The branch-and-bound^a aims to achieve ideal precise verification by dividing a problem into subproblems (branch) and eliminating those that cannot lead to an optimal solution (bound)

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 6/ 25

ahttps://en.wikipedia.org/wiki/Branch and bound







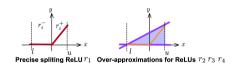
40.40.41.41.1 1 2000

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 6/ 25

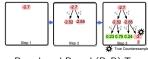
[•] The branch-and-bound^a aims to achieve ideal precise verification by dividing a problem into subproblems (branch) and eliminating those that cannot lead to an optimal solution (bound)

ahttps://en.wikipedia.org/wiki/Branch_and_bound

Specification: $\Phi \wedge \Psi$ Input: $\Phi := x_1 \in [-1,1] \wedge x_2 \in [-1,1]$ Output: $\Psi = (O>0)$ Network: f ReLU 2 ReLU 7 -1.7 Output: $\Psi = (O>0)$ O.5



• The branch-and-bound^a aims to achieve ideal precise verification by dividing a problem into subproblems (branch) and eliminating those that cannot lead to an optimal solution (bound)

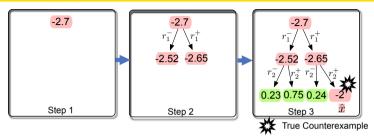


Branch-and-Bound (BaB) Tree

• Split activation ReLU r_2 input into r_2^+ ($x_2 > 0$) and r_2^- ($x_2 < 0$).

ahttps://en.wikipedia.org/wiki/Branch and bound

[•] Split activation *ReLU* r_1 input into r_1^+ ($x_1 \ge 0$) and r_1^- ($x_1 < 0$).

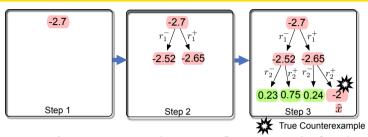


• **Counterexamples**, i.e., inputs violating specifications, can be found in partitioned problem spaces via BaB trees, enabling early termination.

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 **7/25**

⁵Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

 $^{^4}$ Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

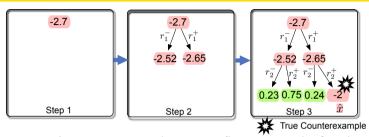


- **Counterexamples**, i.e., inputs violating specifications, can be found in partitioned problem spaces via BaB trees, enabling early termination.
- Efficiently Finding counterexamples is the **key** to scalable NN verification!

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 **7/ 25**

⁵Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

 $^{^4}$ Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

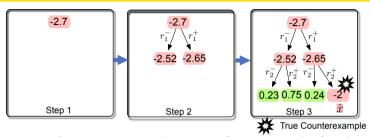


- **Counterexamples**, i.e., inputs violating specifications, can be found in partitioned problem spaces via BaB trees, enabling early termination.
- Efficiently Finding counterexamples is the key to scalable NN verification!
- Conventional BaB algorithm⁵ (breadth-first search) can be inefficient

Guanqin. Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 7/ 2

⁵Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

⁴ Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25



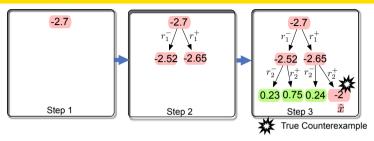
- **Counterexamples**, i.e., inputs violating specifications, can be found in partitioned problem spaces via BaB trees, enabling early termination.
- Efficiently Finding counterexamples is the key to scalable NN verification!
- Conventional BaB algorithm⁵ (breadth-first search) can be inefficient
- **Potentiality** of **counterexample existence** can be inferred by two attributes⁴:
 - Tree nodes (output lower bound \hat{p}) with smaller values.
 - Tree node's depth with deeper level.

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 7/2

 $^{^{5}}$ Bunel et al., Branch and bound for piecewise linear neural network verification, JMLR'20

⁴ Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

MCTS-Based Method (Fukuda+, DATE'25)

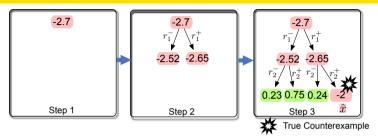


• (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)

 $^4\mathrm{Fukuda}$ et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

4 D P 4 D P 4 E P 4 E P E *) 4 (*

MCTS-Based Method (Fukuda+, DATE'25)



- (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)
- Compute Rewards⁴ (counterexample potentiality (CePO)) of subproblems:

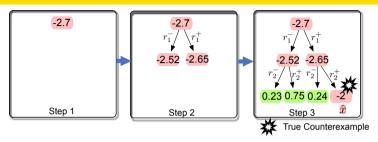
$$\llbracket \Gamma \rrbracket = \begin{cases} -\infty & \text{if } \hat{p} > 0 \\ +\infty & \text{true CE} \\ \lambda \frac{|\Gamma|}{K} + (1 - \lambda) \frac{\hat{p}}{\hat{p}_{\min}} & \text{otherwise} \end{cases}$$

4□ → 4団 → 4 差 → 4 差 → 9 9 0 0

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

⁴ Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

MCTS-Based Method (Fukuda+, DATE'25)



- (Fukuda+, DATE'25) adopts Monte Carlo Tree Search (MCTS)
- Compute Rewards⁴ (counterexample potentiality (CePO)) of subproblems:

$$\llbracket \Gamma \rrbracket = \begin{cases} -\infty & \text{if } \hat{p} > 0 \\ +\infty & \text{true CE} \\ \lambda \frac{|\Gamma|}{K} + (1 - \lambda) \frac{\hat{p}}{\hat{p}_{\min}} & \text{otherwise} \end{cases}$$

• (Fukuda+, DATE'25) outperforms naive BaB (breadth-first search) approach

⁴ Fukuda et al., Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification, DATE'25

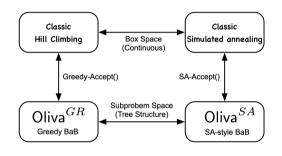
4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025

Limitations and Motivations

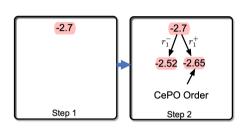
- MCTS-based approach (Fukuda+, DATE'25) is deterministic:
 - If this MCTS **failed** to find a counterexample, repeating the same run is meaningless and it does not give a different answer.
 - Inferring counterexamples (MCTS rewards) is a **heuristic** method, and it may **fail** to provide accurate guidance frequently.
- This work is a stochastic optimization-based approach
 - Counterexample finding through an effective optimization-based sampling, e.g., hill climbing (HC), simulated annealing (SA)
 - Repeated runs with different seeds can explore the tree in different ways.

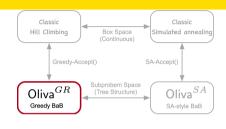
Contribution



- We propose Oliva that adopts stochastic optimization for neural network verification
 - 1 Oliva^{GR}: a greedy approach
 - Oliva^{SA}: simulated annealing (SA)-style approach
- Oliva^{SA} is achieved by identifying and extending two relations:
 - Relation between Oliva^{GR} and classic hill climbing
 - Relation between classic simulated annealing and classic hill climbing

Greedy Approach (Oliva *GR*)



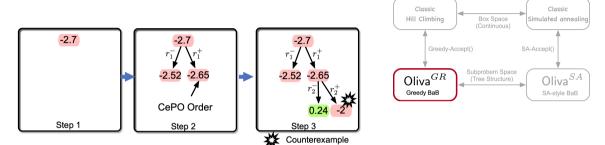


Oliva^{GR} is inspired by (Fukuda+,DATE'25)

 Driven by Greediness, we directly select deeper and smaller ones, until the subproblem is verified;

| イロトイプトイミト ミ シスで | Guanqin,Zhang@unsw.edu.au | ECOOP'25 - July 02, 2025 | 11/ 25

Greedy Approach (Oliva *GR*)

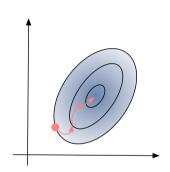


Oliva^{GR} is inspired by (Fukuda+, DATE'25)

- Driven by Greediness, we directly select deeper and smaller ones, until the subproblem is verified;
- Oliva^{GR} may fail to find a counterexample (even if it exists)
- "CePO" order is a **heuristic**, but not always promising.

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

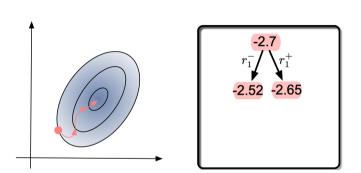
Connection Between Hill Climbing and Oliva^{GR}

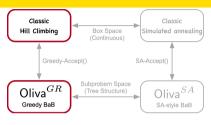


• **Hill Climbing** samples and optimizes within a continuous box domain, gradually converging to a local optimum.

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 13/ 25

Connection Between Hill Climbing and Oliva^{GR}

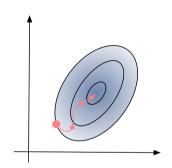


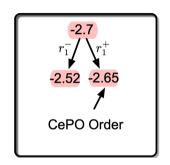


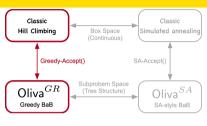
- **Hill Climbing** optimizes within a continuous box domain by sampling, gradually converging to a local optimum.
- Oliva^{GR} works on a **tree structure** to select the subproblems.

《ロ》《母》《意》《意》《意》 意 ◆ (2) Guanqin, Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 14/ 25

Connection Between Hill Climbing and Oliva^{GR}





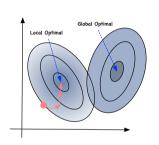


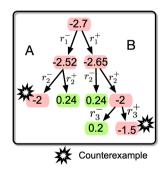
- Connection: action of accepting better candidates.
 - Oliva^{GR}: accept only good child nodes
 - Hill climbing: accept only good samples
- We build the edge between the two that shares the same "greedily accept" policy.

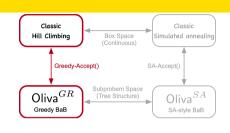
《ㅁ》《를》《불》《불》 (불· 이익()

Guanqin. Zhang@unsw.edu.au ECOOP'25 - July 02, 2025 15/ 25

Issues of Hill Climbing and Oliva^{GR}



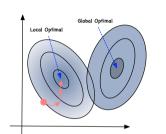


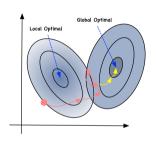


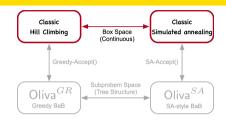
- The issues are also essentially the same:
 - Hill climbing can be trapped in local optima and lose the global optimum;
 - Oliva^{GR} can be misled by the heuristic order, resulting in suboptimal performance

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 16/ 25

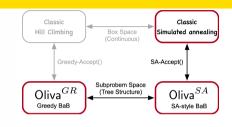
Classic Simulated Annealing (SA)







- In stochastic optimization, SA is a solution to "local optima" issue of hill climbing;
- Compared to hill climbing, it assigns a probability to accept a worse sample;
- The probability keeps evolving over the process, controlled by temperature
 - At initial stage, temperature is high, SA favors exploration;
 - Later, temperature becomes low, SA favors exploitation.



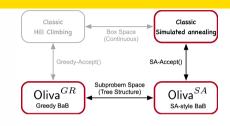
While $T \leftarrow \alpha \cdot T$

$$\Delta p \leftarrow \exp\left(\frac{\min \mathsf{R}(\Gamma \cdot a) - \max \mathsf{R}(\Gamma \cdot a)}{T_{f}}\right) \text{ s.t. } a \in \{r_{k}^{+}, r_{k}^{-}\}$$

$$\Gamma^{*} \leftarrow \Gamma \cdot a^{*} \text{ s.t. } a^{*} \leftarrow \begin{cases} \text{randomly choose } r_{k}^{+} \text{ or } r_{k}^{-} & \text{if } \mathbf{rand}(0, 1) < \Delta p_{f} \\ \text{arg } \max_{a \in \{r_{k}^{+}, r_{k}^{-}\}} & \text{otherwise} \end{cases}$$

• Oliva^{SA} extends the **accept policy** of classic SA to **tree structures**

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 18/ 25



While $T \leftarrow \alpha \cdot T$

$$\Delta p \leftarrow \exp\left(\frac{\min \mathsf{R}(\Gamma \cdot a) - \max \mathsf{R}(\Gamma \cdot a)}{T_{f}}\right) \text{ s.t. } a \in \{r_{k}^{+}, r_{k}^{-}\}$$

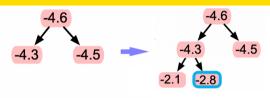
$$\Gamma^{*} \leftarrow \Gamma \cdot a^{*} \text{ s.t. } a^{*} \leftarrow \begin{cases} \text{randomly choose } r_{k}^{+} \text{ or } r_{k}^{-} & \text{if } \mathsf{rand}(0, 1) < \Delta p_{f} \\ \text{arg } \max \\ a \in \{r_{k}^{+}, r_{k}^{-}\} & \text{otherwise} \end{cases}$$

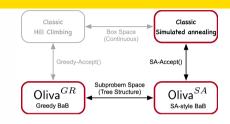
- Oliva^{SA} extends the accept policy of classic SA to tree structures
 - At initial stage, temperature is high, so it favors **exploration**

4 D > 4 P > 4 E > 4 E > E 990

18/25

Guanqin.Zhang@unsw.edu.au ECOOP'25 - July 02, 2025



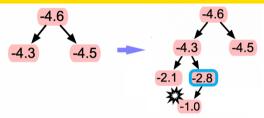


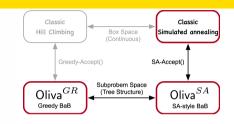
While $T \leftarrow \alpha \cdot T$

$$\begin{split} \Delta p \leftarrow \exp\left(\frac{\min \mathsf{R}(\Gamma \cdot a) - \max \mathsf{R}(\Gamma \cdot a)}{T \nmid t}\right) & \text{ s.t. } a \in \{r_k^+, r_k^-\} \\ \Gamma^* \leftarrow \Gamma \cdot a^* & \text{ s.t. } a^* \leftarrow \begin{cases} \text{randomly choose } r_k^+ \text{ or } r_k^- & \text{if } \mathsf{rand}(0, 1) < \Delta p \nmid t \\ \arg \max_{a \in \{r_k^+, r_k^-\}} \mathsf{R}(\Gamma \cdot a) & \text{otherwise} \end{cases} \end{split}$$

- Oliva^{SA} extends the accept policy of classic SA to tree structures
 - At initial stage, temperature is high, so it favors exploration
 - Later, temperature becomes low, so it favors exploitation

4 D > 4 A > 4 B > 4 B > B 9 Q Q





While $T \leftarrow \alpha \cdot T$

$$\begin{split} & \Delta p \leftarrow \exp\left(\frac{\min \mathsf{R}(\Gamma \cdot a) - \max \mathsf{R}(\Gamma \cdot a)}{T \cdot \ell}\right) \ \text{ s.t. } a \in \{r_k^+, r_k^-\} \\ & \Gamma^* \leftarrow \Gamma \cdot a^* \ \text{ s.t. } a^* \leftarrow \begin{cases} \text{randomly choose } r_k^+ \text{ or } r_k^- & \text{if } \mathbf{rand}(0, 1) < \Delta p \\ \text{arg } \max \mathsf{R}(\Gamma \cdot a) & \text{otherwise} \end{cases} \end{split}$$

- Oliva^{SA} extends the accept policy of classic SA to tree structures
 - At initial stage, temperature is high, so it favors exploration
 - Later, temperature becomes low, so it favors exploitation

4□ > 4回 > 4 = > 4 = > ■ のQ○

Comparison with (Fukuda+, DATE'25)

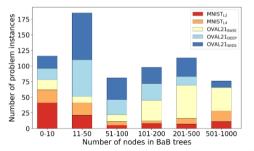
- Major technical differences
 - Monte Carlo Tree Search (i.e., MCTS in Fukuda+, DATE'25) originally deals with tree structures, so the application to BaB is relatively straightforward
 - Simulated Annealing (SA and general stochastic optimization algorithms)
 originally deals with box domains, so the application to BaB requires a novel way of
 adaptation in this work.
- Regarding verification effectiveness
 - MCTS involves a fixed policy of tree exploration; repeating the same run does not give a different answer.
 - Oliva^{SA} is stochastic, so repeating experimental runs is useful to find counterexamples

Experiment Settings

Model	Architecture	Dataset	#Activations	# Instances	#Images
$\mathtt{MNIST}_{\mathtt{L2}}$	2×256 linear	MNIST	512	100	70
$\mathtt{MNIST}_{\mathtt{L4}}$	4×256 linear	MNIST	1024	78	52
OVAL21 _{BASE}	2 Conv, 2 linear	CIFAR-10	3172	173	53
OVAL21 _{WIDE}	2 Conv, 2 linear	CIFAR-10	6244	196	53
$OVAL21_{DEEP}$	4 Conv, 2 linear	CIFAR-10	6756	143	40

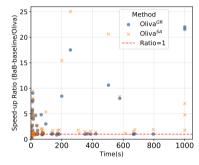
Following VNN-COMP^a:

- 690 instance across MNIST, CIFAR-10, with five different models.
- Local robustness with $\epsilon \in [1/255, 16/255]$
- Meaningful sub-problem selection.



^aMüller et al., arXiv preprint arXiv:2212.10376.

Experiment Results I

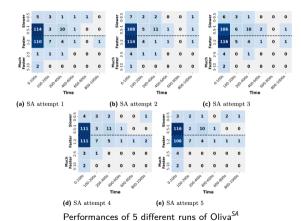


MNIST-L2 by 100 problem instances

- Each point is a verification problem
 - x-axis: time costs by BaB-baseline
 - y-axix: our speedup over BaB-baseline
- Points over the dashed red line are faster than BaB-baseline.

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025
 23/ 25

Experiments on Stochasticity of Oliva^{SA}



- Overall, the performance of Oliva^{SA} is stable:
- We observe such cases: while by one run we cannot find counterexamples, by repeating the same run with different seeds, we manage to find counterexamples.

 Guanqin.Zhang@unsw.edu.au
 ECOOP'25 - July 02, 2025

Summary and Research Opportunities

- We propose Oliva, a metaheuristic optimization tool:
 - Oliva^{GR}: Greedily driven by **Potentiality**, generalize "acceptance" in "hill-climbing" optimization.
 - Oliva^{SA}: Simulated annealing mitigates the "greediness" of "hill-climbing" as a stochastic optimization.
- Other directions and our ongoing work for counterexample-guided NN verification
 - Scalable incremental falsification of neural networks given a similar NN architecture and existing verification results.
 - 2 Efficient verification of the Transformer architecture and large language models.