
Eager to Stop: Efficient Falsification of Deep
Neural Networks

Guanqin ZHANG1,2

1 University of New South Wales
2 CSIRO, Data61

Guanqin.zhang@unsw.edu.au

Abstract. Deep Neural Networks (DNNs), extensively used in safety-
critical domains, require methods to detect misbehavior and ensure prov-
able specifications. DNN testing encounters limitations in time and cov-
erage, affecting effectiveness. DNN verification divides into exact and
approximated approaches. Due to scalability challenges, exact methods
yield precise outcomes but are suitable for smaller networks. Approxi-
mated techniques using abstractions tend to be over-approximated for
soundness. Over-approximated verifiers might produce more misleading
counterexamples than actual violations, impacting the identification of
flaws. This paper proposes a falsifier to efficiently identify counterexam-
ples for DNN robustness by refuting specifications. The proposed ap-
proach gradient information to fast approach local optima against spec-
ifications, collecting relevant counterexamples effectively.

Keywords: Robustness · Verification · Falsification

1 Introduction

DNNs are widely implemented and impressively deployed in the safety-critical
domains, such as autonomous vehicles [1], program analysis [18, 2], and airborne
collision avoidance systems [9]. Although DNNs possess remarkable abilities, the
growing apprehension surrounding their potentials, such as adversarial perturba-
tions [7, 12] for misclassification and unforeseeable decisions. This motivates the
understanding of the reliability and quality assurance of the underlying models.

There has been a notable upsurge in the exploration and development of
analysis and verification techniques for neural network robustness. Existing ap-
proaches can be mainly categorized as testing and verification. Testing [14, 21,
7, 23] is usually providing counterexamples, such as adversaries, to reject the
robustness of the DNNs. During the testing, the evaluation is based on spe-
cific test inputs and criteria, which may still lead to unforeseen issues. On the
other hand, verification [8, 20, 5, 6, 16] can mathematically certify models with
provably guaranteed robustness or supply a counterexample that violates the
expected behaviors of models.



2 Guanqin ZHANG

2 Problem Statement and Related Work

A network model N : Rn → Rm maps an n-dimensional input vector to an m-
dimensional output vector. The model N takes an input x and outputs N(x).
The typical verification problem for the network model N with a specification
ϕ : Rn+m → {T,F} is a decidable problem whether there existing x ∈ Rn,y ∈
Rm holds (N(x) = y) ∧ ϕ(x,y). ϕ represents the desired property that model
behaviors followed human expectation. In this context, we use (lp, ϵ)-adversary
to denote a perturbed input region centered at x0 with ϵ radius, i.e., {x′ | ∥x′−
x0∥p ≤ ϵ} measured by lp norm. The satisfied results indicate the specification
holds, whereas the unsatisfiability expresses the existence of a counterexample
x within the (lp, ϵ)-adversary, violates the specification.

Adversarial Examples Adversarial robustness responds to the ML models’ re-
liability, which has recently attracted significant attention. Some adversaries
generated by attack methods can indicate the existence of a violation of the
specification. Szegedy et al. [19] first proposed the generation method for ad-
versarial perturbations and leveraged a hybrid loss to approximate the solution
of inner maximization. Furthermore, Goodfellow et al. [7] introduced an effi-
cient FGSM method to generate the adversarial inputs for misleading the model
behavior. However, the efficiency property comes from the linear loss function,
which leads to the vulnerability to iteration attacks. In response to this prob-
lem, Madry et al. [12] pushed this method into the multi-iteration attack and
released their gradient-based PGD method for inner maximization solving. Fol-
lowing that, a line of works emerged and boosted the development of adversarial
attacks [13].

Neural Network Testing Neuron coverage [14] is utilized to count each neuron’s
activation status, and Ma et al. [11] extend with a set of test criteria for deep
learning systems. Xie et al. [21] detect potential defects of neural networks by
coverage-guided fuzzing framework with metamorphic testing. However, test-
based approaches suffer from the limited number of crafted testing samples, such
that they cannot enumerate all possible inputs to denote erroneous behavior of
the network.

Neural Network Verification Formal verification techniques [10] can certify neu-
ral networks based on specifications to ensure proof or identify violations. One
important aspect of verification is gauging the robustness of the neural net-
work model against input adversarial perturbations. Verification approaches fall
into two main categories: (1) Exact verification typically utilizes mixed integer
linear programming (MILP) solver [20] or satisfiability modulo theories (SMT)
solvers [8], which suffers low scalability due to solving such an ‘NP-hard’ prob-
lem. (2) Approximated verification often reduces the non-linear properties into
linear inequalities, such as instantiated neural network properties into the ab-
stract domain, such as polytope [17], zonotope [16].



Eager to Stop: Efficient Falsification of Deep Neural Networks 3

3 Proposed Solution

Verification to Falsification. Verifying the robustness of a model is akin to prov-
ing a theorem, which poses a significant challenge in accurately assessing a neural
network. Specifically, acquiring proof for the network’s robustness can be diffi-
cult, leading to the possibility of overestimating its robustness. Ideally, a proven
robust model is necessarily reasoning all possible perturbation properties on a
given input and indicating non-existence of violation. This verification is im-
possible when the networks are becoming larger and deeper. Consequently, the
majority of verification methods that have been published either choose a subset
of properties to analyze or utilize approximations of the model. We propose a fal-
sification scheme to eagerly find the counterexample within the (lp, ϵ)-adversary
for the network model. Formally, the falsification problem keeps searching for a
falsifying x that violates the specification ϕ. Falsification shortcuts the verifica-
tion processes and only supplies the rejected violations.

Clean sample

Threat model 
Nagative space 
Positive space 

Safe sample

×

×

False alarm

Verification & Testing 

×

Falsification Trajectory 

(A) Verification (B) Falsification

<latexit sha1_base64="TiunfhzdNARBSysZ2a0a3HeyOmI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmQ2dl1ZlYIS37CiwdFvPo73vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WDGSfoR3QgecgZNVZqdzHRXMSyV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt3Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIyfZ70uUJmxNgSyhS3txI2pIoyYyMq2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgIeIZXeHMenRfn3fmYtxacfOYQ/sD5/AFQEZAq</latexit>✏ <latexit sha1_base64="TiunfhzdNARBSysZ2a0a3HeyOmI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYnvcmQ2dl1ZlYIS37CiwdFvPo73vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WDGSfoR3QgecgZNVZqdzHRXMSyV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt3Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIyfZ70uUJmxNgSyhS3txI2pIoyYyMq2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgIeIZXeHMenRfn3fmYtxacfOYQ/sD5/AFQEZAq</latexit>✏

Fig. 1. Comparison between verification and falsification. We depict a threat model
(threat model refers to a specification of the potential threats by some errors) suspected
of containing positive feature space, including some false alarm samples. The false alarm
samples can fool the model into making erroneous predictions.

Figure 1 demonstrates the comparison between verification and falsification
of DNN. We construct a binary classification problem for a clean sample, which
contains a false alarm sample within a feasible set of a threat model, as shown
in (lp, ϵ)-adversary. Verification can be described as a constraint of specifications
in a green dashed-line octagon on the left-hand side. The octagon expresses
specification constraints, which cover the ample feature space for the threat
model. In practice, most of the existing exact verification methods borrowed
SMT or MILP solvers scale poorly when the size of the network is growing larger.
On the other hand, the approximated methods do not directly verify the property
of the network but reduce it to a relaxation problem. So the designed/expected
specifications do not precisely formalize the threat model behaviors. As shown



4 Guanqin ZHANG

in Figure 1 (A), the green octagon shape may overly cover the actual target
specification from the model and cover most of the feature space.

Falsification attempts to reject the violations by eagerly falsifying the non-
robust counterexamples beyond DNN models in a smaller search space. From
this perspective, we here argue for falsifying the properties of the designed spec-
ification. The falsification aims to provide a convincing optimal point that helps
counterfeit the verification specification in a smaller region contoured with the
red line in Figure 1 (B). For a perturbation within (lp, ϵ)-adversary to claim as
a false alarm violated to a robust model specification, it is necessary to actually
find a perturbed example x′ that causes the model to make an error. This is sim-
ilar to composing an adversary by using adversarial attack approaches. FGSM
claims that linear behavior in high-dimensional spaces is sufficient to cause adver-
saries. However, adversarial attack approaches cannot assemble theoretic proof
results to certify the model.

Falsification spreads across different domains [22], which refers to the concept
that requirements (specifications) are falsified (not true). Guided by human-
designed specifications, falsifiers can reach violations faster than verifiers when
processing with a non-robust model. Dohmatob [4] finds robustness is impossible
to achieve under some assumptions with the data. DNNF [15] reduces the neural
network input and output property to an equivalent set of correctness problems.

Proposed Approach Our approach aims to search the counterexample and falsify
the non-robust DNN model diligently. Based on the model, we process the dif-
ferential activation function, as they are differentiable and continuous. Firstly,
we define a specification to the network behavior:

∀x∈{x′ | ∥x′ − x0∥p≤ϵ}, Ns0(x)−Ns1(x) > 0, (1)

where p is normalization, usually taken as ∞-norm, and s0 is the original la-
bel for x0. Then, the model behaviour requires that for any of x within the
(lp, ϵ)-adversary should always be larger than the label value for s1. We aim to
determine whether the direction violates the specification. To decide the gradi-
ent, we use a vector ∆, that has the same dimension as the input domain, to
identify the direction, namely, given an input x, it holds the objective function
Ns0(x+∆) > Ns1(x). The problem remains to decide ∆.

We use the line search method to start from the given direction of ∆xk

to move with a step length t > 0 to modulate how far along this direction
we proceed. The direct aim would satisfy: f(xk + t∆xk) < f(xk). Armijo [3]
step size constraint is a method used in optimization algorithms to determine
the step size. We use the Armijo condition to search for a sufficient decrease
to our objectives. The constraint states that if the step size is small enough,
the value of the objective function will decrease in gradient descent or other
optimization algorithms. The Armijo step size constraint restricts the step size
at each iteration to ensure the algorithm’s convergence. Specifically, the Armijo
step size constraint requires that the step size at each iteration satisfies the
following inequality:

f(xk + t∆xk) ≤ f(xk) + c1t∇fT
k ∆xk (2)



Eager to Stop: Efficient Falsification of Deep Neural Networks 5

Here, xk is the current value of the optimization variable, ∆xk is the search
direction, t is the step size, f(x) is the objective function, ∇fk is the gradient
of the objective function at the current point, and c1 is a constant typically
chosen between 0 and 1. If the step size t satisfies the above inequality, it is
considered acceptable; otherwise, the step size needs to be reduced, and the
search is restarted. When we repeat and collect enough points, we can falsify the
model as it is not robust.

4 Conclusion and Future Work

We propose a new falsification approach to complement the existing neural net-
work verification approaches in searching and identifying counterexamples to
prove the existence of violations in a non-robust model. We propose utilizing the
Armijo line search method to iteratively reach the counterexample. Armijo bor-
rows the gradient information from the network model, of which the advantage
is the falsification of the specification in the smaller search space.

In our upcoming research endeavors, we intend to incorporate and examine
additional elements of the network model. In our current study, we exclusively
focused on the differentiable activation function. An eminent obstacle lies in
dealing with piece-wise activation functions like ReLU, wherein the output lacks
continuity. Addressing this challenge can facilitate the analysis of a broader range
of network models.

An additional aspect involves utilizing the falsification findings for the pur-
pose of enhancing the network model’s integrity. Falsification provides prompt
identification of cases where violations occur during the initial stages. Armed
with these instances of violation, we can effectively identify shortcomings, sub-
sequently enhancing both the performance and robustness of the model.

References

1. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

2. Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding via con-
trastive learning for software vulnerability detection. In: ISSTA. pp. 519–531 (2022)

3. Dai, Y.H.: On the nonmonotone line search. Journal of Optimization Theory and
Applications 112, 315–330 (2002)

4. Dohmatob, E.: Generalized no free lunch theorem for adversarial robustness. In:
International Conference on Machine Learning. pp. 1646–1654. PMLR (2019)

5. Fischer, M., Sprecher, C., Dimitrov, D.I., Singh, G., Vechev, M.: Shared certificates
for neural network verification. In: CAV’ 2022, Part I. pp. 127–148. Springer (2022)

6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: SP. pp. 3–18. IEEE (2018)

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)



6 Guanqin ZHANG

8. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: Computer Aided Ver-
ification: 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I 30. pp. 97–117. Springer (2017)

9. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification
and analysis of deep neural networks. In: Computer Aided Verification: 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I 31. pp. 443–452. Springer (2019)

10. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends® in Op-
timization 4(3-4), 244–404 (2021)

11. Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li,
L., Liu, Y., et al.: Deepgauge: Multi-granularity testing criteria for deep learn-
ing systems. In: Proceedings of the 33rd ACM/IEEE international conference on
automated software engineering. pp. 120–131 (2018)

12. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

13. Nicolae, M.I., Sinn, M., Tran, M.N., et al.: Adversarial robustness toolbox v1. 0.0.
arXiv:1807.01069 (2018)

14. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing
of deep learning systems. In: proceedings of the 26th Symposium on Operating
Systems Principles. pp. 1–18 (2017)

15. Shriver, D., Elbaum, S., Dwyer, M.B.: Reducing dnn properties to enable falsifica-
tion with adversarial attacks. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). pp. 275–287. IEEE (2021)

16. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. Advances in neural information processing systems 31
(2018)

17. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

18. Sui, Y., Cheng, X., Zhang, G., Wang, H.: Flow2vec: Value-flow-based precise code
embedding. ACM 4(OOPSLA), 1–27 (2020)

19. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

20. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

21. Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B., Yin,
J., See, S.: Deephunter: a coverage-guided fuzz testing framework for deep neural
networks. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. pp. 146–157 (2019)

22. Zhang, Z., Arcaini, P., Hasuo, I.: Constraining counterexamples in hybrid system
falsification: Penalty-based approaches. In: NASA Formal Methods Symposium.
pp. 401–419. Springer (2020)

23. Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense:
Characterizing adversarial examples using robustness. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. pp.
42–55 (2021)


