
Path-Sensitive Code Embedding via Contrastive Learning for
Software Vulnerability Detection

Xiao Cheng1, Guanqin Zhang1, Haoyu Wang2, Yulei Sui1

xiao.cheng@unsw.edu.au
1UNSW Sydney, 2HUST

School of Computer Science and Engineering
UNSW Sydney, Australia

July 26, 2024

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 18 / 43

mailto:xiao.cheng@unsw.edu.au


Contribution

▶ A new path-sensitive code embedding utilizing

• precise path-sensitive value-flow analysis.

• a pretrained value-flow path encoder via self-supervised contrastive learning.

▶ An evaluation to demonstrate the effectiveness and the ability to reduce the training
costs of later path-based prediction models to precisely pinpoint vulnerabilities.

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 19 / 43



Complementary to Static Vulnerability Detection

▶ Static vulnerability detection has been very successful in detecting low-level,
well-defined bugs, such as memory leaks, null dereferences.

▶ They rely heavily on expert knowledge and user-defined rules.

▶ They have difficulty in finding a wider range of vulnerabilities (e.g., naming issues
and incorrect business logic).

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 20 / 43



Learning-Based Vulnerability Detection

Program

Prediction Model Report

Vulnerable

Safe
OR

Code Embedding

Coarse-grained: predicting whether a program file or a method is safe or
vulnerable

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 21 / 43



Structure-Unaware Embedding

Program
Natural Language

Processing Report

Vulnerable

Safe
OR

Lexical Tokens

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 22 / 43



Structure-Aware Embedding (GNNs)

Program

Report

Vulnerable

Safe
OR

if(cond)

cond = ...

Def-use

foo(1)
foo(2)

foo(3)
cond cond

cond

Data
Dependence

Control
Dependence

Program Dependence Graph Graph Neural Network

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 23 / 43



Limitations of GNN (Path-Unaware)

Graph Neural Network

Vulnerable
Vulnerable. OK...

But how does this
happen? Where's
the bug-triggering

path? 

So hard to debug!

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 24 / 43



Limitations of GNN (Path-Unaware)

Contradictory path
conditions: infeasible

Unmatched call-
returns: infeasible

▶ GNN is path-unaware because it uses all pair-wise message passing.

x′i = W1xi +W2

∑
j∈N(i)

ej,i · xj

xi is the feature vector of node i , x′i is the updated feature vector of node i , N(i) is neighbors of node i . W1, W2

and ej,i are tunable parameters.

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 25 / 43



The Aim of This Work

▶ ContraFlow: a path-sensitive code embedding approach which uses self-supervised
contrastive learning to pinpoint vulnerabilities based on value-flow paths.

Unlabelled
Program

(Method/Slice)

Value-Flow Paths

...

(a) Contrastive Value-Flow Embedding

VPE

Training
Prediction

...

(b) Value-Flow Path Selection

...

(c) Detection
Model Training

Trained
Model...

Report

...

...

Unseen
Program

(Method/Slice)

Labelled
Program

(Method/Slice)

Vulnerable

Safe
Active

Learning

...

Feasibility
Checking

... ...
... ...

Value-
Flow
Path

Encoder

Predict Method/Slice and
Interpret Buggy Paths 

Pull Push

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 26 / 43



ContraFlow Framework
(a) Contrastive Value-Flow Embedding

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 27 / 43



ContraFlow Framework
(a) Contrastive Value-Flow Embedding

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 28 / 43



ContraFlow Framework
(a) Contrastive Value-Flow Embedding

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 29 / 43



ContraFlow Framework
(a) Contrastive Value-Flow Embedding

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 30 / 43



ContraFlow Framework
(a) Contrastive Value-Flow Embedding

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 31 / 43



ContraFlow Framework
(b) Value-Flow Path Selection

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 32 / 43



ContraFlow Framework
(b) Value-Flow Path Selection

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 33 / 43



ContraFlow Framework
(b) Value-Flow Path Selection

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 34 / 43



ContraFlow Framework
(c) Detection Model Training

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 35 / 43



ContraFlow Framework
(c) Detection Model Training

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 36 / 43



ContraFlow Framework
(c) Detection Model Training

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 37 / 43



ContraFlow Framework
(c) Detection Model Training

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 38 / 43



ContraFlow Framework
(c) Detection Model Training

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 39 / 43



Evaluation
Benchmark

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 40 / 43



Evaluation
Benchmark

Table 1: Labeled sample Distribution.

Dataset granularity # Vulnerable # Safe # Total

D2A
Method 21,396 2,194,592 2,215,988
Slice 105,973 10,983,992 11,089,965

Fan
Method 8,456 142,853 151,309
Slice 42,527 713,239 717,496

FQ
Method 8,923 9,845 18,768
Slice 45,627 50,125 95,752

Total
Method 38,775 2,347,290 2,386,065
Slice 194,127 11,747,356 11,903,213

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 41 / 43



Evaluation
Comparison with Baselines

Table 2: Comparison of method- and slice-level approaches under informedness (IF), markedness
(MK), F1 Score (F1), Precision (P) and Recall (R). ContraFlow-method/slice denotes the
evaluation at method- and slice-level respectively.

Model Name IF (%) MK (%) F1 (%) P (%) R (%)

VGDetector 31.1 29.3 56.7 52.6 61.4
Devign 30.1 28.8 58.7 54.6 63.4
Reveal 34.2 33.8 63.4 61.5 65.5

ContraFlow-method 60.3 58.2 75.3 71.5 79.4

VulDeePecker 17.3 17.3 52.3 52.2 52.4
SySeVR 24.3 24.2 55.0 54.5 55.4
DeepWukong 48.1 48.4 67.0 67.4 66.5
VulDeeLocator 38.4 38.1 62.0 61.4 62.5
IVDetect 37.4 37.3 64.1 64.0 64.6

ContraFlow-slice 75.1 72.3 82.8 79.5 86.4

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 42 / 43



Future Research Opportunities

▶ Pushing the boundaries to scale more precise software security analysis (on-demand,
selective, and adaptive) for detecting emerging vulnerabilities.

▶ SA4AI: Abstract execution to analyse and verify code LLMs / neural
networks.

• Symbolic path-sensitive analysis to prove properties of neural networks, such as
robustness, safety, and security guarantees of code LLMs, as well as understanding
and explanation.

▶ AI4SA: Ultra-fast learning-based vulnerability detection to significantly boost
the performance of conventional software analysis

• Robust, comprehensive learning-based code representations with deep code semantics
(e.g., path-sensitive abstractions).

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 42 / 43



Thank You!
Q & A

Xiao Cheng (UNSW) ISSTA 2022 July 26, 2024 43 / 43




