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Incremental verification is an emerging neural network verification approach that aims to accelerate the verifi-
cation of a neural network N* by reusing the existing verification result (called a template) of a similar neural
network N. To date, the state-of-the-art incremental verification approach leverages the problem splitting
history produced by branch and bound (BaB) in verification of N, to select only a part of the sub-problems for
verification of N*, thus more efficient than verifying N* from scratch. While this approach identifies whether
each sub-problem should be re-assessed, it neglects the information of how necessary each sub-problem should
be re-assessed, in the sense that the sub-problems that are more likely to contain counterexamples should be
prioritized, in order to terminate the verification process as soon as a counterexample is detected.

To bridge this gap, we first define a counterexample potentiality order over different sub-problems based on
the template, and then we propose Olive, an incremental verification approach that explores the sub-problems
of verifying N* orderly guided by counterexample potentiality. Specifically, Olive has two variants, including
Olive8, a greedy strategy that always prefers to exploit the sub-problems that are more likely to contain
counterexamples, and OliveP, a balanced strategy that also explores the sub-problems that are less likely, in case
the template is not sufficiently precise. We experimentally evaluate the efficiency of Olive on 1445 verification
problem instances derived from 15 neural networks spanning over two datasets MNIST and CIFAR-10. Our
evaluation demonstrates significant performance advantages of Olive over state-of-the-art classic verification
and incremental approaches. In particular, Olive shows evident superiority on the problem instances that
contain counterexamples, and performs as well as lvan on the certified problem instances.
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1 Introduction

The prevalence of deep neural networks (DNNs) in the era of artificial intelligence has brought
revolutionary impacts to numerous domains, such as transportation, healthcare, robotics, and
energy. Notably, their exceptional capacity to learn from extensive datasets empowers them to
deliver outstanding performance across diverse applications, e.g. image recognition, semantic
segmentation, natural language processing and strategic decision-making.

Despite the prevalence of DNNs, there are growing concerns about their safety and robustness,
especially when they are deployed in safety-critical domains, e.g., automated driving. Indeed, existing
research [Goodfellow et al. 2015; Madry et al. 2018] has shown that even small perturbations to
DNN inputs can result in a significant alteration of inference results. In real-world deployments of
DNNS, such perturbations are ubiquitous, ranging from naturally occurring environmental noise to
deliberate adversarial attacks by hackers.

Existing approaches: Numerous efforts have been paid to enhance the safety and robustness
assurance of DNNs, among which verification is a preferable technique that can provide rigorous
formal guarantees. Technically, verification approaches need to combat with the non-linearity of
DNN inferences brought by their activation functions, such as the piecewise-linear ReLU function.

While MILP [Cheng et al. 2017; Tjeng et al. 2018] or SMT solving [Katz et al. 2017] can handle
this issue, these approaches suffer from a severe problem of scalability. Alternatively, approximated
methods [Gehr et al. 2018; Singh et al. 2018, 2019; Wang et al. 2018b; Wong and Kolter 2018; Xue
and Sun 2023; Zhang et al. 2022] use linear bounds to over-approximate the output ranges of
activation functions; these approaches are thus more efficient, but not complete, i.e., they may
produce false alarms with spurious counterexamples. To mitigate this issue, Bunel et al. [Bunel
et al. 2020] combine approximated methods with the branch and bound (BaB) strategy, which first
applies approximated methods to a problem, and then splits the problem into sub-ones if it confirms
a violation to be a false alarm. Since approximated verifiers can achieve better precision with
sub-problems, BaB can finally draw a reliable conclusion after splitting the problem for sufficiently
many times. That said, the performance of BaB can be erratic - the rapid growth in the number of
sub-problems can significantly diminish the efficiency of BaB.

Recently, incremental verification [Fischer et al. 2022; Ugare et al. 2023, 2022] emerges with the
aim of accelerating the verification of a neural network N*, by leveraging the existing verification
results of a similar neural network N as a template, where N* has an identical structure to N but
slightly differs in model parameters. In practice, there could be various strategies for template
defining and reusing. The state-of-the-art approach Ivan [Ugare et al. 2023] defines the template
as the tree generated by BaB for tracking the problem-splitting history of N, and then it exploits
the tree to skip the sub-problems identified as unnecessary to be re-assessed. As this strategy
can reduce the number of sub-problems that need to be checked in the verification of N*, it thus
performs more efficiently than verifying N* from scratch; however, its performance improvement
w.r.t. BaB could be restricted by the number of sub-problems it skipped, which is very limited.

Motivation: The template, namely, the tree generated by BaB for verification of N, embeds not
only whether a tree node should be re-assessed (as leveraged by Ivan [Ugare et al. 2023]), but
also how necessary a tree node should be re-assessed, in the sense that different branches may
have different likelihood of containing counterexamples, and the branches that are more likely
to find a counterexample should be prioritized. In neural network verification, prioritizing the
sub-problems that are more likely to contain counterexamples is meaningful, because verification
can be terminated as soon as a counterexample is found. This strategy has been exemplified in [Guo
et al. 2021], by which verification is accelerated significantly.
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In a template tree, such counterexample likelihood can be signified by two node attributes: i) the
depth of a tree node reflects the level of problem refinement, so a deeper node can introduce less
approximation imprecision from the approximated verifiers, thereby reducing the possibility of
producing spurious counterexamples; ii) for each node, the approximated verifier can provide a
quantitative assessment, which can be used as a quantitative indicator for counterexample likelihood.

Contributions: In this paper, we propose to reuse the information regarding how necessary a tree
node should be re-assessed according to the template tree of N, for accelerating the verification of
N*. We propose to do so by exploring the template tree orderly during the verification of N* and
prioritizing those branches that are more likely to contain counterexamples. To that end, we define
a partial order called counterexample potentiality over tree nodes that embodies their likelihood of
containing counterexamples based on the two attributes of tree nodes, i.e., their depths and their
quantitative assessments by approximated verifiers.

Based on the counterexample potentiality order, we propose Olive, an order-leading incremental
verification approach, that explores the template tree guided by the counterexample potentiality
order to terminate the verification upon encountering a counterexample. Specifically, we propose
two versions of Olive, namely, Olive®, a greedy strategy that always favors the exploitation of
the tree nodes in which a counterexample is more likely to be found, and OIiveb, a balanced
strategy that also explores the tree nodes that seem less likely to contain counterexamples, in case
there is a considerable gap between N* and N and thus the template is not precise enough. Our
approach is helpful in the following sense: given a neural network whose specification satisfaction
is unknown beforehand, it is always desired to know the answer efficiently. Our approach can
terminate immediately once a counterexample is found, by which verification result is determined.
By our strategy, if the network violates the specification, we can quickly reach the answer; even
though it satisfies, we are still not slower than non-ordered approaches like lvan.

We experimentally evaluate the effectiveness of our proposed approach based on 5 reference
models (i.e., the original network N), 15 models as N*, generated by model different alteration
methods, including weight pruning and quantization; along with the specifications regarding local
robustness properties, they lead to totally 1445 verification problem instances. Our evaluation
demonstrates significant performance advantages of Olive over the baseline approaches BaB
and Ivan. In particular, Olive shows evident superiority on the problem instances that contain
counterexamples, and performs as well as Ivan on the certified problem instances.

Paper structure: The rest of the paper is organized as follows: §2 overviews our approach by
using an illustrative example; §3 introduces the necessary technical background; §4 presents the
proposed incremental verification approach; §5 presents our experimental evaluation results; §6
discusses related work. Conclusion and future work are presented in §7.

2 Overview of Our Approach
2.1 Motivating Example

Fig. 1a depicts a group of neural networks N, N* and N', where N* and N are generated by slightly
altering the model parameters of N, respectively. The verification problem of a neural network
concerns whether its output O satisfies that O + 2.5 > 0, for any input (x1,x2) € [0,1] % [0,1].

Branch and Bound (BaB): Fig. 1b illustrates how BaB solves the problem for N. It relies on an ap-
proximated verifier, such as DeepPoly [Singh et al. 2019], that, given a verification problem possibly
with extra constraints on the inputs of certain ReLUs, computes an over-approximated assessment
p € R signifying how far the specification is from being satisfied. As p is over-approximated, it can
be explained as follows: if p is positive, it is sure that the specification is satisfied; however, if p is
negative, the satisfaction of specification cannot be decided. BaB follows the steps as follows:
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Fig. 1. An example of neural network verification, and BaB approach [Bunel et al. 2020] for network N

1) Initially, BaB applies the approximated verifier to the original verification problem: if p > 0, the
problem is verified and the verification can be terminated; otherwise (i.e., p < 0), the satisfaction
of specification cannot be decided yet, which is the case in Fig. 1b where p = —1.9;

2) In the case when p < 0, the approximated verifier will report a counterexample, but it could
possibly be spurious. BaB then validates the counterexample, by feeding it into the network
and checking whether the output of the network indeed violates the specification: if it is a real
one, then the verification problem is falsified and thereby terminated; otherwise, BaB splits the
problem into two sub-problems, by selecting a ReLU r; and adding a constraint (either r;": input
of r; being positive, or r; : input of r; being negative) to each of the sub-problems. In Fig. 1b, the
problem is split into two sub-problems by adding the constraints ;" and r;;

3) For each of the sub-problems, BaB treats it as the target verification problem and iteratively calls
Step 1 and Step 2. Now each sub-problem is a refined one since the ReLU ; is not needed to be
approximated. BaB continues this until all the sub-problems are verified, or a real counterexample
is detected with a sub-problem. In Fig. 1b, although the problem is not yet solved by splitting r;
only, it is solved after further splitting r4, by which all the four sub-problems are verified.

Consequently, BaB produces a tree as illustrated in Fig. 1b, where each node is a (sub-)problem and

the p for each (sub-)problem is labeled in each node.

Incremental verification: lvan [Ugare et al. 2023] is an incremental approach that leverages the
tree in Fig. 1b as a template to accelerate the verification of a network N* that has the identical
structure to N but slightly differs in model parameters. Ivan is illustrated in Fig. 2b. Compared
to re-applying BaB to N* in Fig. 2a, Ivan skips the non-leaf nodes in the template (i.e., the tree
in Fig. 1b) and directly starts with verification of the sub-problems identified by the leaf nodes in
Fig. 1b, because during the verification of N*, BaB may also be not able to terminate until it reaches
the sub-problems identified by the leaf nodes in Fig. 1b. By this, lvan can save the time spent for
the non-lead nodes in verification of N*. Indeed, its superiority is illustrated in Fig. 2b: compared
to BaB that needs 6 calls of the approximated verifier (Fig. 2a), lvan requires only 3 times.

2.2 Olive: The Proposed Approach

The template tree, e.g., Fig. 1b, embeds not only whether (as leveraged by Ivan), but also how
necessary each node should be re-assessed; different nodes can differ in the necessity of being
re-assessed, in the sense that some nodes that are more likely to contain counterexamples should
be prioritized, such that verification can be terminated as soon as a counterexample is found.
Our proposed Olive® infers the potentiality of having counterexample in each node, by leveraging
the depth and the quantitative assessment p of each node in the template tree shown in Fig. 1b.
Consequently, as shown in Fig. 2c, it identifies the leaf node r{r; (the p of which is 0.5) in Fig. 1b
that has the same depth but smaller assessment than other leaf nodes, signifying that it is closest
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Fig. 2. Comparison of Olive® with BaB and lvan for verification of N*
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Fig. 3. Comparison between Olive8 and Olive® for verification of N

to specification violation. In Fig. 2¢, Olive® prioritizes this node, and it immediately hits the real
counterexample, which costs three sub-problem attempts for lvan (Fig. 2b).

The strategy of Olive® is greedy, in the sense that it always prefers the nodes that are more likely
to contain counterexamples according to the template. However, this strategy can fail, because it is
possible that the tree of the updated network is divergent from that of the original network. This is
normal, because the small alteration of the model parameters does not necessarily produce a new
network that has similar behavior as the original one. In this case, we need a balanced strategy
that not only favors the suspicious nodes, but also explores other nodes to avoid being misled by
an imprecise template.

To address this challenge, we propose Olive®, which strikes a balance between exploitation of
suspicious nodes and exploration of the nodes that seem less suspicious. As shown in Fig. 3, for
the verification of N (see Fig. 1), while Olive® struggles in the branch of r{r; inspired by the
template, Olive” benefits from the exploration to the sibling of riry, such that it manages to detect
the branch of r{r;] with p = -2, which is smaller than that of 7, and thus more promising.

Then, by expanding r{r}, Olive® hits a real counterexample in the node riryry, and thereby
terminates the verification. In comparison with Olive® that requires 6 calls of approximated verifiers,
Olive® only needs 4 calls, and so it can save much time to achieve the verification result.

3 Preliminaries

3.1 Neural Network Verification

In this paper, we mainly target (fully-connected) feed-forward neural networks, a type of neural
network that has been widely adopted in literature [Miiller et al. 2022a].

Definition 1 (Feed-forward neural network). A (feed-forward) neural network is a function
N: R™ — RY. It consists of [ hidden layers and an output layer, and the i-th hidden layer maps
x;—1 € R™1! to x; € R™, by x; = 0(W;x;_1 + B;), where W;x;_; + B; is an affine transformation
parameterized by a matrix of weight W; and a vector of bias B;, and ¢ is a non-linear activation
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function. Common choices of activation functions include ReLU, sigmoid, and tanh. In this paper,
we select the widely-adopted option ReLU(x) = max(0, x). The output layer maps the output x; of
the I-th hidden layer to the output N(x¢) € RY of the network, by an affine transformation only.

A specification of a neural network is divided to an input specification ¢ and an output specifica-
tion ®, which are formally defined as follows.

Definition 2 (Input and output specification). Let N: R™ — RY be a neural network. An input
specification ¢ C R™ is a connected region in the input domain R™ of N. An output specification
®: RY — {true, false} is a predicate over the output domain of N. In particular, we adopt the
output specifications in the form (f(x;) > 0), where f: RY — R is a linear transformation. If a
given x; € RY satisfies f(x;) > 0, then it holds that ®(x;) = true, also written as x; = ®.

The definition in Def. 2 suffices to express various properties of neural networks, such as safety.
Accordingly, we define the problem of neural network verification as follows.

Definition 3 (Neural network verification). Let N: R™ — RY be a neural network, ¢ be an input
specification, and ® be an output specification. The neural network verification problem assesses
whether it holds that N(x¢) |= ® for any x; € ¢.

The solvers used to solve the neural network verification problem are called verifiers. Formally,
a verifier can be described as a function that takes as input N, ¢, and ®, and outputs either true,
which indicates that N satisfies the specification, or false otherwise, with a counterexample as a
witness of specification violation, i.e., an input x € R™ such that (x € ¢) A (N(x) [E£ D).

3.2 Branch and Bound: A Complete Neural Network Verification Approach

Neural network verification is a challenging problem due to the non-linearity brought by activation
functions. While exact output range analysis is often not scalable, approximated methods [Gehr et al.
2018; Singh et al. 2018, 2019; Wang et al. 2018b; Wong and Kolter 2018; Xue and Sun 2023; Zhang
et al. 2022] are more efficient via pursuing an over-approximation of the actual output range.

Approximated methods: We denote by AppVerifier a verifier that implements an approximated
method. Like other verifiers, AppVerifier takes as input a neural network N, an input specification
¢, and an output specification @; it then computes an over-approximation of the output range
of N. Notably, the output of AppVerifier consists of a tuple (p, ), where p € R is called an
approximated lower bound that holds p < minye, (f(N(x))) (f is as defined in Def. 2), and X € R™
is a counterexample returned only when p < 0. Intuitively, p is the lower bound of f derived from
the approximated output range of N. Thus, p is not greater than the actual lower bound of f derived
from the exact output range of N.

Consequently, (p, X) returned by AppVerifier can be interpreted as follows: if p > 0, it implies
that f’s actual lower bound minge, f(N(x)) > 0 and thus N satisfies the specification; otherwise
(i.e., if p < 0), the result of AppVerifier cannot be used to indicate the satisfaction or violation of N,
and we need to check the validity of X returned by AppVerifier: if X is a real counterexample, then
N violates the specification; otherwise if X is spurious one, we cannot infer whether N satisfies or
violates the specification by the result of AppVerifier. In other words, AppVerifier is sound in the
sense that p > 0 implies that N indeed satisfies the specification, but AppVerifier is not complete as
it could possibly return a spurious counterexample.

These approximation strategies are designed to handle non-linear components in a neural net-
work, namely, the activation functions in each neuron, and typically, they use linear approximations
to bound the output range of each activation function. There have been various approximation
strategies that differ in their approximation precision and computational efficiency, such as Deep-
Poly [Singh et al. 2019] and ReluVal [Wang et al. 2018b]. Note that our proposed technique is
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orthogonal to these approaches, and it is not limited to a specific approximated verifier; neverthe-
less, we assume that our selected AppVerifier satisfies Assump. 1 as follows.

Assumption 1 Let Q; and Q; be the original output regions of two different neural networks, and
they hold the relation Q; C Q,. By applying the same approximated verifier AppVerifier, we obtain
two approximated regions Q; and Q. Then, Q; and Q; should hold the relation Q; € Q5.

Essentially, Assump. 1 states that the over-approximation produced by AppVerifier changes
monotonically w.r.t. the actual region. In our context, the approximated region by AppVerifier
should be correlated with the actual reachable region of the neural network.

Branch and Bound (BaB): As stated, AppVerifier is efficient but incomplete, which may pro-
duce spurious counterexamples. To ensure completeness, Bunel et al. [Bunel et al. 2020] combine
these approximated methods with BaB that splits the problem into sub-problems and then applies
AppVerifier to solve each of them. In this way, the imprecision brought by AppVerifier can be miti-
gated when it is applied to sub-problems, thus reducing the possibility of spurious counterexamples.
There are different problem splitting strategies, such as input space splitting [Wang et al. 2018b]
and ReLU splitting [Bunel et al. 2020; Ferrari et al. 2022; Wang et al. 2018a]. In this paper, we adopt
the latter, which is scalable for verification with high-dimensional inputs.

We introduce ReLU specifications, which formalize the constraints that identify the sub-problems
of neural network verification under ReLU splitting.

Definition 4 (ReLU specification). Let N be a neural network with K neurons, and %; € R
(i € {1,...,K}) be the input for the ReLU function in neuron i. An atomic proposition AP w.r.t.
neuron i is defined as either ; > 0 (written as r}) or x; < 0 (written as r;). Then, a ReLU
specification I is defined as the conjunction of a sequence Set(I') = {APy,...,AP|r|} of atomic
propositions, where each AP € Set(T) is defined w.r.t. a distinct neuron. |T'| is the number of atomic
propositions in Set(T'); specially if |T'| = 0, T is denoted as T. Moreover, we define a refinement
relation < over ReLU specifications, namely, given two ReLU specifications I; and I';, we say I}

refines I} (denoted as I; < I) if and only if Set(I;) C Set(I}).

By selecting a neuron i, the ReLU function is split to two linear functions, identified by the two
input constraints r; and ;. Thereby, a neural network verification problem boils down to two
sub-problems, for each of which AppVerifier does not need to perform over-approximation for the
ReLU of neuron i.

BaB splits the problem if AppVerifier returns an inconclusive result with a spurious counterexam-
ple, and then applies AppVerifier to the sub-problems. Note that here AppVerifier is allowed to re-
ceive an additional argument, i.e., a ReLU specification I', and it holds that if T; < I3, then the approx-
imated lower bound p, from AppVerifier(N, ¢, @, I,) is tighter than p; from AppVerifier(N, ¢, ®,T})
(i.e., p2 > p1). According to literature [Bunel et al. 2020; Henriksen and Lomuscio 2021], the neuron
(thus the ReLU) selected to be split is crucial to the performance of BaB. In this paper, we encode
an existing ReLU selection heuristic [Henriksen and Lomuscio 2021] as a function H that, given a
ReLU specification I' (that involves a sequence of ReLUs), decides the next ReLU to split.

Alg. 1 presents the BaB algorithm. As shown in Line 2 and 3, the neural network verification
problem is solved by calling the function BAB with the initial ReLU specification T. The function
BAB is described in Lines 4-17. First, BaB selects the ReLU specification I' at the head of Q and
applies AppVerifier (Line 7) to assess the satisfaction of N under I (Line 8). If the result is true, then
the problem identified by T is verified and BaB checks the next sub-problem (Line 17). Otherwise,
BaB checks whether the counterexample X returned by AppVerifier is a real one, by feeding % to
N and checking whether the output N (%) violates the output specification (Line 11). If X is a real
counterexample, BaB returns false (Line 12), and this can back-propagate to the call of BAB with T
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Algorithm 1 Branch and Bound (BaB)

Require: a neural network N, an input specification ¢, an output specification ®, an approximated verifier AppVerifier(-),
and a ReLU selection heuristic H(-).
Ensure: a verdict € {true, false} and a specification tree 7~

1: T« 0 > initialize the specification tree 7~ storing problem splitting history
2: Qe {T} > initialize a queue storing ReLU specifications to be evaluated
3: verdict < BAB(N, ¢, ®, Q) > call BAB with the ReLU specification T

4: function BAB(N, ¢, ®, Q)

5 if EMPTY(Q) then
6 return true > all (sub-)problems are verified
7: T « Por(Q) > pop the head of Q to verify
8: (p, %) «— AppVerifier(N, ¢, ®,T) > call the approximated verifier with T
9: T —TU{{Tp)} > add node (T, p) in the specification tree
10: if p < 0 then
11: if VALID(X, N, ®) then > X is a real counterexample
12: return false > return false
13: else > X is a spurious counterexample
14: rr <« H(T) > obtain the next ReLU to be split
15: fora € {r;;, r];} do
16: PusH(Q,T A a) > push sub-problems to Q for checking later
17: return BAB(N, ¢, ®, Q) > recursive call to check remaining sub-problems

in Line 3, so the algorithm returns false. Otherwise, it needs to split the problem further to refine
the results. To that end, BaB applies H to obtain the next ReLU ry to be split (Line 14), and then
pushes the sub-problems of I' A 7} and I' A r_ to Q for checking them later (Line 17). In this case,
BaB also recursively calls itself to assess the remaining sub-problems. If none of the sub-problems
reports a real counterexample, finally Q will be empty and the algorithm returns true (Line 6).
Note that during the execution of BaB, Alg. 1 maintains a structure 77, called a specification tree,
which is initialized in Line 1 and updated in Line 9 to record each time when an AppVerifier is
applied. The node of the tree consists of a tuple (T, p), where T identifies the path of the node and p
is the approximated lower bound of the sub-problem. As shown later in §4, incremental verification
reuses this tree built on a neural network N in the verification of a new neural network N*.

Proposition 1 Let 7 be a specification tree and (I, 1), (Iz, p2) € T be two nodes. If T, refines I}
(i.e., |T1| < |Tz|), then it holds that p; < ps.

Intuitively, if T refines I, the related sub-problem of I; will derive an actual region Q, that is a
subset of the region Q; derived from the related sub-problem of I';. By Assump. 1, the approximated
region Q; during verification under I} is also a subset of the approximated region Q; of Iy, and
therefore it holds that p; < p,.

Lemma 1 The BaB algorithm is sound and complete.

Proor skeTCH. The soundness of BaB relies on that: 1) AppVerifier is sound; 2) the ReLU specifi-
cations identified by the leaf nodes of the specification tree 7~ cover all the cases about the input
conditions of the split ReLUs in the neural network.

The completeness of BaB relies on that: a counterexample X reported by BaB must be a real one
because x has been validated by BaB in line 11. Moreover, since the number of ReLUs in a neural
network N is finite and in the worst case the sub-problem will be a linear one, BaB can eventually
be terminated and a real counterexample is guaranteed to be found if it exists in a branch. O
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4 The Proposed Incremental Verification Approach
4.1 Incremental Verification of Neural Networks

Incremental verification is an emerging approach that aims to accelerate verification of neural
networks, and a typical usage scenario is stated as follows. Let N and N* be two neural networks
that have the same model architecture (namely, same number of layers and same number of neurons
at each layer) and only differ slightly' in their parameters. This can happen in many cases; for
instance, in model repair, N* can be obtained by fine-tuning the parameters of N. Incremental
verification aims to accelerate the verification of N* for the same input and output specification as
that of N, by reusing the results and information from the verification of N.

Template reuse in Ivan: Ivan [Ugare et al. 2023] is the state-of-the-art incremental verification
approach. In lvan, N is first verified using the BaB algorithm in Alg. 1. During this verification,
a specification tree 7, consisting of a set of tuples (T, p), is maintained to record the process of
problem splitting for the verification of N. This specification tree is then used as a template for
accelerating the verification of N*.

Specifically, the heuristic of reusing 7~ in the verification of N* by Ivan is as shown in Fig. 2b:
instead of verifying N* from scratch, it skips the sub-problems identified by the internal nodes in 7~
and directly starts with the sub-problems identified by the leaf nodes. This heuristic originates from
the similarity between N and N*, namely, the internal nodes that require further splitting in the
verification of N may also need to be split in the verification of N*; since each call of AppVerifier is
costly, these internal nodes are not necessary to be assessed again and the verification of N* can
directly start from the sub-problems identified by those leaf nodes in 7.

Motivation: Ivan exemplifies an effective strategy of leveraging the specification tree to skip
potentially unnecessary sub-problems. However, the information hidden in the specification tree
of N is not sufficiently exploited. One such important information consists of the order over the
nodes in the specification tree, and specifically, for acceleration of verification, the order can be
associated with the potentiality of containing a real counterexample in a path of the tree.

Exploitation of such an order in specification tree expansion is useful for accelerating the
verification of N*, because as soon as a real counterexample is found, it is sufficient for BaB to
report the verdict of the verification problem, and so BaB can be terminated. If N* indeed contains
such a counterexample, the earlier it can be found, the earlier BaB can be terminated. Even though
there exists no counterexample in N*, expanding the specification tree of N* according to the order
associated to counterexample potentiality does not hinder the verification efficiency, because in
that case, verification needs to cover the same number of sub-problems as the normal BaB does,
but they only differ in the order of visiting the sub-problems, and so there should be no significant
difference in terms of efficiency. In §4.2, we introduce an order in that spirit, followed with two
incremental verification approaches, i.e., Olive® in §4.3 and Olive® in §4.4.

4.2 Counterexample Potentiality Order in Specification Tree

We introduce the order associated with the counterexample potentiality of each node in the
specification tree. Our definition of the order concerns with two reference node attributes, namely
node depth and approximated lower bound.

Node depth Intuitively, in the specification tree of N, the depth |I'| of a node I’ indicates the
necessity of problem refinement because all the sub-problems identified by its ancestors
cannot be verified. Moreover, a more refined sub-problem introduces less approximation

n practice, such differences often come from small tuning to neural network parameters and thus they are measured
empirically by engineers. In §5, we experimentally evaluate the level of similarity within which our approach is effective.
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imprecision during the application of AppVerifier. So, if a counterexample % is found with
such a problem, % is more likely to be a real one. Hence, node depth can be considered as an
indicator of the potentiality of finding real counterexamples.

Approximated lower bound The approximated lower bound p obtained by application of
AppVerifier to a node can also be considered as an indicator that shows how far the sub-
problem identified by the node is from violating the specification. This is because p is
computed based on the approximated reachable region of a neural network, and according to
Assump. 1, this approximated reachable region is correlated to the ground truth reachable
region of the neural network. To that end, the less the approximated lower bound is, the
more likely the sub-problem can provide a counterexample.

The relation between these two attributes has been stated in Prop. 1, i.e., the approximated lower
bound monotonically increases w.r.t. the depth of tree nodes. In this regard, it is difficult to infer
which node is more likely to contain a counterexample, if a node (I, p;) is superior than another
node (I, f») in only one of the attributes (e.g., |T1| > |Iz| but p; > p,). Based on this insight, we
formalize the relation over the nodes in a specification tree, as a partial order, called counterexample
potentiality order as defined in Def. 5.

Definition 5 (Counterexample potentiality order). Let (Iy, p1) and (I, p2) be two nodes in a
specification tree. A counterexample potentiality order C between the two nodes is defined as
follows: (I, p1) T (I3, p2) if and only if it holds one of the following two cases: 1) |I}| < |I| and
[31 > f)g; 2) |1"1| < |1"2| andﬁl > f)g.

Note that C is a partial order, because there exists the case when two nodes are not comparable
w.rt. C, e.g., when [[] > |I3] but p; > po. In §4.3 and §4.4, we present two different strategies that
exploit this order for achieving efficient incremental verification.

4.3 Olived: Greedy Strategy of Olive

In this section, we present Olive® that adopts a greedy strategy. In line with the counterexample
potentiality order, Olive® prioritizes the node that is more likely to contain a counterexample to
terminate as early as possible. Specifically, over the two attributes in the counterexample potentiality
order, namely, node depth and approximated lower bound, Olive® favors the former one, because it
is more likely to find a real counterexample by solving a more refined sub-problem. To that end, we
tighten the partial order C in Def. 5 to be a total order Cg, called greedy counterexample potentiality
order, as shown in Def. 6.

Definition 6 (Greedy counterexample potentiality order). Let (I}, p1) and (I3, p2) be two nodes
in a specification tree. A greedy counterexample potentiality order C; between the two nodes is
defined as follows: (I', p1) Cg (I, p2) if and only if it holds one of the following two cases: (1)
0] < |5 ) Ti] = T3] and f; > .

Note that Cg is a total order? in the sense that given any two nodes (I3, p1) and (I3, p), it holds
that either <F1,ﬁ1> Ca (1"2,132) or <F2,ﬁz> Ca <r1,ﬁ1>.
Algorithm of Olive®: The proposed Olive® algorithm is presented in Alg. 2. In addition to the
inputs for the BaB algorithm (see Alg. 1), it also requires a neural network N* to be verified, the
total order C defined in Def. 6, and the set L of the leaf nodes in the specification tree 7y of N.
Initially, Olive® feeds all the leaf nodes of 7y to a set S (Line 3). Then it enters a loop that consists
of the main function of Olive®. In the loop, first, the greatest element w.r.t. Cg is selected and then

2There could exist the case where two nodes (I, p1) and (I3, p) are not comparable under Cg because |T}| = |T3| and
1 = p2. To handle that case, we can take a trivial measure, e.g., randomly assigning a fixed order between them.
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Algorithm 2 Olive®: the greedy strategy

Require: two neural networks N and N*, input and output specification ¢ and ®, an approximated verifier AppVerifier(-),
a ReLU selection heuristic H(-), the set L of leaf nodes in specification tree 75 of N, a total order C over tree nodes.
Ensure: a verdict € {true, false} indicating the satisfaction of N*

1: S0 > initialize S to be an empty set
2: for (T, p) € Ldo
3: S—SU{(T,p)} > feed leaf nodes of 7x to S
4: while S # 0 do > if S = 0, it indicates N* is verified
5: select the maximum (T, p) € S as per Cg
6: S—S\{(I,p)} > remove the selected node from S
7: if (T, p) € L then > the selected node is a leaf of 7n
8: (p,X) «— AppVerifier(N*, ¢, ®,T) > leaf nodes get assessed
9: if p < 0 and VALID(%, N*, @) then > the counterexample is a real one
10: return false, X > return false verdict and counterexample
11: if p < 0 then > p is now a approximated lower bound for N*
12: rr « H(T) > select the next ReLU to be split
13: fora e {rj,r} do
14: (p, %) « AppVerifier(N*, ¢, ®,T A a) > apply AppVerifier withT A a
15: if p < 0 then
16: if VALID(X, N*, ®) then > validate x
17: return false, X > return false and a counterexample
18: else > p < 0 but X is spurious
19: S—SU{(TAap)} >addT Aato$S

removed from S (Lines 5 and 6). Note that an element (T, p) in S can be a leaf node from 7y or a
node of the specification tree 7n+ of N*. In the former case, I requires re-assessment by AppVerifier
with N*, and a new p is computed (Line 8). Otherwise, p is already the approximated lower bound
for N*, and thus, it requires no change. In both cases, if p < 0, it implies that the problem needs to
be further split, and hence Olive® calls the ReLU heuristic H to select the next ReLU ry (Line 12).
Having ry, Olive® respectively applies AppVerifier to the sub-problems identified by ' A r* and
I Ar~ (Line 14). If any of the sub-problems returns a real counterexample, Olive® can terminate the
whole verification problem immediately (Line 17). If p < 0, but the counterexample is a spurious
one, the sub-problem is added to S (Line 19) as it is yet to be verified.

In Olive®, the order Cg over the set S initially depends on the template, i.e., the specification
tree of N. In each loop, it selects the node that is maximal in terms of the greedy counterexample
potentiality order (thus most likely to contain a counterexample), and expands its children if
the approximated lower bound p is negative and the counterexample returned by AppVerifier is
spurious. Since Cg prioritizes the child that has a greater depth, Olive® favors exploiting all the
descendants of a node, until either a counterexample is found or the branch is verified.

Lemma 2 Olive® is sound and complete.

Proor. The soundness of Olive® relies on two facts: 1) the AppVerifier is sound; 2) on the termination
of Olive® with a true verdict, it verifies all the sub-problems in S that consists of the leaf nodes of
the specification tree 7y. According to Lemma 1, this is sufficient to verify the original problem
with no ReLU splitting. The proof of the completeness of Olive® is the same as the case of the
original BaB as presented in Lemma 1. O

4.4 Olive®: Balanced Strategy of Olive

While the greedy strategy Olive® favors exploitation of suspicious sub-problems suggested by the
specification tree 75 of N, it can fail when the suggestion given by 7y is not precise enough to
facilitate the verification of N*. Namely, there could exist a different branch in 7y+ other than
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the one being exploited, in which counterexamples are easier to be found. This raises the classic
problem of “exploration and exploitation” trade-off in search-based techniques. In light of this, we
propose a balanced strategy, by modeling the incremental verification problem as a multi-armed
bandit (MAB) [Slivkins et al. 2019] problem.

Multi-Armed Bandits: The MAB problem originally concerns a situation in which a gambler
faces a row of slot machines (called arms), each of which has an unknown reward distribution.
With the goal of maximizing the rewards, the gambler may either explore, i.e., try different arms
to perceive which one is the best, or exploit, i.e., focus on the arm that has been observed as the
best. In literature [Browne et al. 2012], UCBI is a recognized strategy which can achieve a balance
between exploration and exploitation. It prioritizes not only the arms that have better rewards
(exploitation), but also the arms that have been visited less (exploration).

In incremental verification, we treat the sub-problems identified by the leaf nodes of 7y as
different arms, which enables solving the problem in an MAB fashion, in the sense that we play
with these different sub-problems with a goal of quickly exposing a counterexample. Then, a
remaining problem is how to assess the “potentiality” of each arm. In the original MAB, the gambler
can try all of the arms to understand whether each arm is promising. In our context, our trial involves
expanding each sub-problem (identified by a leaf node of 7x) to a sub-tree, and we associate the
concept of “rewards” in the original MAB with our defined counterexample potentiality. Specifically,
our tree expansion follows Monte Carlo tree search (MCTS) [Browne et al. 2012] to achieve a balance
between exploration and exploitation. We present our technical details in the following.

Algorithm of Olive’: The proposed Olive® algorithm is presented in Alg. 3. It consists of two
phases, namely, 1) arm expansion and selection (Lines 1-10), and 2) arm assessment (Lines 12-23).
During the execution of the algorithm, the two phases alternate, where Phase 1 selects an arm (i.e.,
a leaf node in 7x) and passes it to Phase 2 and Phase 2 exploits the arm to give an assessment;
then, based on the assessment from Phase 2, Phase 1 continues arm selection. In the following, we
introduce the details of the two phases:

o Arm expansion and selection. In this phase, Alg. 3 expands the arms by adding them into a work
set W, and at each loop, selects an arm to assess. A notable difference of our problem from the
original MAB consists in that, although the reward distributions of our arms are still unknown, we
have an initial order of counterexample potentiality (e.g., the greedy one in Def. 6) over the arms,
suggested by the specification tree 75 of N, to allow us to expand new arms progressively and
orderly. This insight is integrated with the progressive widening [Browne et al. 2012] technique,
which involves a condition (as in Line 3) that decides the timing of adding new arms into W:

— If arm expansion is necessary (Line 3), a new node I' from the leaf set L of 7y is selected and
added to W (Line 4). Then, AppVerifier is applied to the problem identified by T" (Line 5), and a
reward is computed accordingly (Line 6). The nodes of the tree with root I is recorded in T(T)
(Line 7). The computation of reward will be elaborated on later.

— Otherwise, we select an arm I'* for further assessment, according to UCB1 (Line 9) that
considers both the reward and the number of visits of the arms. We perform the assessment
by passing the selected arm I'* as the argument to call the function AssessBYMCTS (line 10).

o Arm assessment. To assess an arm I', we expand the sub-tree with T as its root, following the Monte
Carlo tree search (MCTS) [Browne et al. 2012] policies to strike a balance between exploration
and exploitation such that the assessment about the sub-tree can be more faithful. Given an arm
T, Alg. 3 first checks if the children of T have been expanded (Line 14):

— If so, it selects a child a* of T by UCB1 (Line 15), and then recursively calls AssessBYMCTS
with " A a*, until it reaches a node whose children have not been expanded yet (Line 16);
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Algorithm 3 Olive®: the balanced strategy

Require: two neural networks N and N*, input and output specification ¢ and ®, an approximated verifier AppVerifier(-),
a ReLU selection heuristic H(+), the set L of the leaf nodes in specification tree 75 of N, hyperparameters C, & and c.
Ensure: a verdict € {true, false} indicating the satisfaction of N*

1: We20 > initialize a work set W
2: while termination condition not reached do
3 if |W| <C- Crew IT(M)])* and |W| # | L] then > needed to try new leaf
4 add to W the maximum (T, p) € L notin W yet, as per Cg
5: (p, %) < AppVerifier(N*, ¢, ®,T) > apply AppVerifier with T
6 R(T) « ComputeReward (|T[, p) > compute reward
7: T(T) « {T'} > initialize the tree of T
8: else
9: I « argmax |R(T') +¢ w > select I'* by UCB1
Few \ [T(D)]
10: AssessBYMCTS(I'™) > call MCTS to assess T’

{true if V(T,p) € £L.R(T) = —o0 )
return > return a verdict

false if 3(T,p) € L. R(T) = +o0

12: function AssessBYMCTS(T)

13: rr <« H(T) > select rg based on current ReLU spec.
14: if (T Ary) € T(T) then > children of T already expanded
( 2In|T(D)] ) ,
15: a* «— argmax [R(TAa)+cy|—— > select a child by UCB1
as{rirg} |T(F A a)|

16: AssSeEssSBYMCTS(I" A a*) > assess the sub-tree with root I' A a*
17: else

18: fora e {ry,r;} do

19: (p, %) « AppVerifier(N*, 9, ®,T A a) > apply AppVerifier withT' A a
20: R(T A a) « ComputeReward (|T|, p) > compute reward
21: T(T'Aa) «{T Aa} > initialize the tree of I' A a
22: R(T) « maxae{r+ r’} R(T A a) > back-propagate the reward of T

Tk
23: TT) «<TT)UT (1" A r;;) uT (F A r];) > back-propagate the tree

— Otherwise, it expands both children of T', by applying AppVerifier to the sub-problems identified
by the children (Line 19), computing the rewards accordingly (Line 20), and recording the
children (Line 21). Then, it propagates the rewards of the children (Line 22) and the update of
tree structure (Line 23), backwards along the path until the root (i.e., the arm).

Reward computation: In Alg. 3, a key ingredient is the use of rewards to signify the values of
exploiting a tree node. Our reward is computed as follows:

+00 if p < 0 and VALID(X, N*, ®)

ComputeReward(|T|, p) := { —o© ifp>0

U|IF<—| +(1- O')ﬁ otherwise
where K is the total number of neurons (i.e., ReLUS), pmin is the minimal approximated lower
bound over the nodes of 7y, and o is a hyperparameter to tune the weights between the two
terms. Intuitively, the reward reflects how promising a node is to find a real counterexample: if
a counterexample is found in a node I', then we already achieved a counterexample and so the
reward is +oo; if a node I' is verified, then there is no more chance to find a counterexample with the
node and so its reward is —co; otherwise, I' still needs to be exploited, and the priority is positively
correlated to |T| and negatively related to f (note that P, should be a negative value).
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Table 1. The details of the benchmarks adopted in our experiments

Model (N) Architecture Neurons Dataset Problem Instances
MNISTL, 2% 256 fully-connected layers 512 MNIST 241
MNISTr4 4% 256 fully-connected layers 1024 MNIST 675
OVAL21gase 2 Conv, 2 fully-connected layers 4582 CIFAR-10 173
OVAL21yrpe 2 Conv, 2 fully-connected layers 6244 CIFAR-10 207
OVAL21pgep 4 Conv, 2 fully-connected layers 6756 CIFAR-10 149

Note that by Line 22 of Alg. 3, the reward of a node T is back-propagated to the ancestor nodes
of T, by taking the maximum of the rewards of children. Based on this mechanism, our definition
of reward can help to decide the termination condition of the verification. By our definition, if
a counterexample is found with T, its reward +oco will be in any case propagated to the root;
if T is verified, the reward is —co and so this node will be ignored in the following verification
phase; otherwise, the reward of ancestor nodes depend on the offspring node that has the greatest
potentiality to contain a counterexample.

Termination and return: In line with the definition of rewards, the termination condition of
Alg. 3 involves the following two cases: 1) V(T, p) € L. (R(F) = —co), it means that all of the leaf
nodes in 7y have been verified, and so verification can be terminated; 2) 3(T, p) € L. (R(T)) = +oo,
it means that there must exist a leaf node in 7y, in which a real counterexample has been detected,
and so verification can be terminated. Then, Alg. 3 returns the verdict accordingly (Line 11): in
Case 1), true is returned as all the sub-problems identified by the leaf node of 7y are verified; in
Case 2), false is returned because a real counterexample is found.

Lemma 3 Olive® is sound and complete.

ProoF. The soundness of Olive® relies on two facts: 1) the AppVerifier is sound; 2) on the termination
of Olive® with a true verdict, it verifies all the sub-problems identified by the leaf nodes of the
specification tree 7y. According to Lemma 1, this is sufficient to verify the original problem. The
proof of the completeness of Olive® is the same as the original BaB as presented in Lemma 1. O

5 Experimental Evaluation
5.1 Experiment Settings

In the section, we report the experiment settings we adopted to assess Olive. The source code,
benchmarks, and results are publicly available in our repository (see §8), and many experimental
details are accessible in our supplementary website [Zhang et al. 2025].

5.1.1 Benchmarks. In our experiments, we adopt the benchmarks that are widely-used in the
neural network verification communities [Brix et al. 2023a]. An overview of the benchmarks is
presented in Table 1. Below we give more details about the settings of these benchmarks.

Datasets: We perform evaluation with two datasets MNIST and CIFAR-19, which have been broadly
adopted in neural network verification community [Liu et al. 2021] and used in VNN-COMP [Brix
et al. 2023a], the annual competition for neural network verification. Both of the datasets concern
with image classification. Specifically, MNIST deals with images of handwritten digits; CIFAR-10
involves images of various real-world objects, such as airplanes, cars, and different animals.
Neural Network Models: For each dataset, we adopt multiple neural networks as the reference
neural networks N in our experiments. These networks will be firstly verified using BaB to generate
templates. Then their model parameters will be modified by different methods to obtain the variation
neural network N* for assessing the performances of different approaches.
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e For MNIST, we adopt two neural networks MNIST, ; and MNIST 4, selected from VNN-COMP [Brix
et al. 2023b]. Both of the networks consist of fully-connected layers, and specifically, MNIST|,
involves 2 layers and MNIST 4 involves 4 layers. Each layer of the models contains 256 neurons,
and in total, MNIST|; has 512 neurons and MNIST, 4 has 1024 neurons;

e For OVAL21, we adopt three neural networks OVAL21gasg, OVAL21y1pe and OVAL21pegp, which are
ReLU-based convolutional neural networks trained on CIFAR-10 [Wong and Kolter 2018]. These
models are also included in VNN-COMP [Brix et al. 2023b]. As shown in Table 1, the three
networks differ in the model architecture, namely, compared with OVAL21gase, OVAL21y1pe has
more neurons in a single layer, and OVAL21pggp has more layers. As a result, OVAL21gase has 4582
neurons, OVAL21y1pe has 6244 neurons, and OVAL21y1pe has 6756 neurons in total.

Model alteration methods: To obtain the altered neural network N* from a reference neural
network N, we apply the following alteration methods, following existing literature [Ugare et al.
2023]. Note that both of these alteration methods have been adopted in practice to achieve particular
goals, which showcases the value of our approach in real-world scenarios.

e Weight pruning is used for improving generalization, inference speed-up, and training/fine-tuning
with fewer samples, etc. It has been integrated as a standard library in mainstream machine
learning platforms such as Pytorch. Technically, it simply removes a number of weights in a given
neural network, by setting them to 0. It is subject to a parameter that indicates the percentage
of the number of weights to be removed. This parameter decides the similarity between N
and N*, and so it possibly affects the effectiveness of our approach. In our experiments, for
different models, we adopt different parameters, due to the different sizes of the neural networks.
Specifically, for the models MNIST 4 and MNIST, ,, we adopt 7% and 12%; for the models OVAL21gsE,
OVAL21yrpe and OVAL21pgep, we adopt smaller parameters 0.1%, 1% and 3% due to the large sizes
of the models. In RQ5, we take this parameter as an indicator of the similarity between N and
N*, and take a specific look at the performance change of Olive under different parameters.

e Quantization is also a widely-recognized technique for the similar purposes as weight pruning. It
has also been adopted in mainstream machine learning platforms such as Pytorch. Technically, it
converts an original floating number to a different format using less number of bits, e.g., using
8-bit integers. We adopt such a conversion for the alteration of MNIST models. For the models of
OVAL21, since performing quantization can cause a big change to model behavior due to their
large numbers of model parameters, we thus apply weight pruning methods only.

Specifications: In our experiments, we evaluate the local
robustness property of each model. To that end, an input spec-
ification is identified by an e, which is a distance measure
under Lo, and identifies a square region in input space; an
output specification is identified by a reference image x and
requires that for any input x’ such that ||x’ — x|| < €, the
model should classify x” to the same label with x.
To avoid meaningless specifications which can be solved by O o (2o

a very simple BaB tree (e.g., a tree that has only 1 node), we

perform a binary search for € for each reference image x such Fig. 4. The distribution of the sizes of
that the template tree produced by verification of N against the templates used in our experiments
x and € has a considerable number of nodes. Note that this

is necessary because, otherwise, the template can contain too few nodes, which cannot provide
meaningful information for the verification of N*. The distribution of the sizes of the template trees
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used in our experiments across all the benchmarks is shown in Fig. 4. By Fig. 4, we can observe
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that all of the templates consist of a reasonable number of tree nodes (most of templates have tree
size 100 to 500), so they can provide meaningful information for incremental verification.

5.1.2  Baseline approaches. To assess the efficiency of Olive, we compare the performance of Olive
with four baseline approaches, including three classic verification approaches, namely, BaB [Bunel
et al. 2020] (as introduced in Alg. 1), and other two state-of-the-art approaches Marabou [Katz et al.
2019] and af-Crown [Wang et al. 2021], which participated in VNN-COMP [Brix et al. 2023b], and
one incremental verification approach Ivan [Ugare et al. 2023], as introduced in §4.1.

5.1.3  Research questions. Our evaluation aims to answer the following five research questions:

® RQ1: Is Olive more efficient than existing approaches? In this RQ, we want to compare the efficiency
of Olive with baseline approaches to assess if Olive performs better than baselines.

e RQ2: How does Olive perform for violated and certified verification problems respectively?In this
RQ, we want to assess the performance of Olive for the verification problem instances that violate
and satisfy the specifications, respectively.

® RQ3: Which strategy of Olive can achieve better performance? In this RQ, we want to compare the
performances between the two strategies of Olive, namely, Olive® and Olive®.

e RQ4: How do different hyperparameters influence the performance of Olive®?In this RQ, we aim to
understand the influences of hyperparameter selections in Alg. 3 to the performance of Olive.

e RQ5: How is the performance of Olive subject to the similarity of N* to N ?In this RQ, we want
to assess the performance of Olive under different pruning levels, to understand the necessary
similarity level for Olive to be effective.

5.1.4  Evaluation metrics. For each research question, we adopt the following evaluation metrics.

e To answer RQ1, we apply all the six approaches, including two proposed approaches Olive®
and Olive®, and four baseline approaches, and compare their performance for verifying the
problem instances presented in Table 1. Specifically, we set 1000s as timeout. Note that Ivan,
Olive® and Olive® are incremental verification approaches, that require a template from N; the
template is generated by running BaB, also constrained by the timeout, and all three incremental
verification approaches share the same template for verification of N*. In a comparison between
two approaches, we adopt the following two evaluation metrics:

— the number of the problems solved by one approach but not solved by another approach;

— the time spent for solving the problem, when at least one approach manages to solve a problem
instance (i.e., returns a verdict true or false). Moreover, we compute the speedup of one approach
w.r.t. another approach.

e To answer RQ2, we show a breakdown result of Olive for the verification problem instances that
are finally confirmed to be true and that are finally confirmed to be false. Through this RQ, we
aim to understand the performance of Olive under these two different cases. As the evaluation
metric, we compare the time costs of different approaches as done in RQ1.

o To answer RQ3, we adopt the same evaluation metrics as in RQ1 and RQ2, namely, we compare
the time costs of the two strategies of Olive. Specifically, we check the performance differences
between the two approaches on individual problem instances, and if Olive® is better than Olive®,
it implies that our balanced sub-problem selection strategy takes effects.

e To answer RQ4, we adopt the same metrics as RQ1, and compare the performances of Olive”
under different settings of hyperparameters. For this RQ, we randomly select 25 instances from
each of the 15 models with different alterations, leading to 375 instances in total.

o To answer RQ5, we change the parameters of weight pruning in order to change the similarity
between N* and N. Then we evaluate the performance of Olive under different similarity levels,
and to which extent Olive is still useful to accelerate the verification of N*.
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Table 2. RQ1 - The performance comparison between five approaches (two classic approaches af-Crown,
Marabou, and three incremental approaches Ivan, Olive®, OliveP), in terms of the average speedup w.r.t. BaB
over the solved verification problems, and the number of the additional problems that are not solved by BaB
but solved by other approaches.

Model Alteration af-Crown Marabou Ivan Olive® OliveP
Speedup +Solved | Speedup +Solved | Speedup +Solved | Speedup +Solved | Speedup +Solved

MNIST, Quant(Int8) 1.08x 0 0.93x 0 3.59% 8 3.28X 5 2.51X 3
MNIST,, Prune(7%) 1.05x 0 1.02x 0 1.60x 13 1.75% 10 1.73x 11
MNIST > Prune(12%) 2.28X 0 1.22x 0 2.31x 0 34.89x 1 35.98x 4
MNIST 4 Quant(Int8) 2.18% 0 1.28% 0 1.78% 4 2.15% 5 2.14% 6
MNIST 4 Prune(7%) 1.01x 0 0.99x 0 1.59% 4 2.16x 2 2.18x 3
MNIST 4 Prune(12%) 1.06x 0 1.1x 0 2.92x 2 14.74X% 3 14.99x 23
OVAL21gase | Prune(0.1%) 1.01x 0 0.93x 0 1.74x 16 2.56X 11 2.58X 7
OVAL21gasg | Prune(1%) 1.04x 0 0.99x 0 1.79% 17 2.37X 12 2.33X 7
OVAL21gase | Prune(3%) 1.00% 0 0.96x 0 1.77% 14 2.31x 10 2.29% 6
OVAL2Tpgep | Prune(0.1%) 1.02x 0 1.03x 0 1.91x 10 3.19% 8 3.21% 5
OVAL21pgep | Prune(1%) 1.56x 3 1.14x 0 1.92x 7 3.14X 5 3.18x 3
OVAL21pegp | Prune(3%) 1.03x 0 1.01x 0 1.88% 4 2.79% 2 2.78X 2
OVAL21y1pe | Prune(0.1%) 1.0x 0 0.88% 0 1.98x 1 5.82X 1 5.98x 1
OVAL2Tyrpe | Prune(1%) 0.98% 0 0.83% 0 1.74x 1 7.51% 1 7.34% 2
OVAL2Tyrpe | Prune(3%) 1.02x 0 0.93% 0 1.88x 4 2.79% 2 2.78% 2

Software and hardware dependencies: We use Google Cloud Computing [Google LLC [n.d.]]
with 60vCPU and with the memory of 240 GB running with the Ubuntu 22.04 operating system.
We adopt the ReLU selection strategy (i.e., H in Alg. 1, Alg. 2 and Alg. 3) from DeepSplit [Henriksen
and Lomuscio 2021]. We adopt LP-based triangle relaxation [Bunel et al. 2020] as our backend
approximated verifier AppVerifier. The linearized analyzer required by the approximated verifier
utilizes the Gurobi solver [Gurobi Optimization, LLC 2023].

5.2 Evaluation

RQ1 Is Olive more efficient than existing approaches?

Comparison with BaB: A performance comparison between five approaches (including two
state-of-the-art classic verification approaches a¢f-Crown and Marabou, and three incremental
verification approaches Ivan, Olive® and Olive®) and the classic verification approach BaB, is shown
in Table 2. Specifically, for approaches other than BaB, Table 2 shows the average speedup w.r.t.
BaB over solved problem instances (i.e., at least one approach gives a verdict true or false) and the
number of problem instances that are not solved by BaB but solved by other approaches.

The results clearly show the performance advantage of the three incremental verification ap-
proaches over BaB, in the sense that incremental verification approaches can achieve a significant
speedup over BaB. Due to such speedup, for all of models, incremental approaches manage to solve
more verification problem instances within the timeout. This insight is consistent with that in
Ivan [Ugare et al. 2023], indicating that incremental verification that leverages existing knowledge
about verification of N can indeed bring advantages in verification of a similar network N*.

Comparison with Marabou and af-Crown: By Fig. 2, we can also see that, while af-Crown
and Marabou exhibit a little performance advantage over BaB, the performances of these three
approaches are comparable, and the two approaches underperform the three incremental verification
approaches in general. This is expected, because although these two approaches take various
strategies to improve the performance, for a given network N*, they need to verify from scratch,
which is time-consuming in any case; in contrast, incremental verification reuses the information of
previous verification, which can effectively accelerate the verification of N*. Although af-Crown
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Fig. 5. RQ1&RQ3 - The comparison between our proposed approach Olive and the baseline approach Ivan,
in terms of time cost and the speedup of Olive over lvan.

indeed improves the performance of verification considerably compared to BaB, the advantage
is still not significant, compared to incremental verification approaches, which highlights the
usefulness of reusing information from previous verification as incremental verification does.

Comparison with Ivan: By Fig. 2, we can see that the speedup brought by our approaches Olive®
and Olive® are mostly greater than that from Ivan. Indeed, both Olive® and Olive® achieve higher
speedup than lvan in 14/15 cases. Notably, in model MNIST,, Olive” and Olive® achieve more than
34x speedup respectively, and in model MNIST 4, Olive® and Olive® achieve more than 14x speedup
respectively, signifying a great outperformance of Olive over lvan.

To better compare Olive and Ivan, in Fig. 5, we plot the time cost and the speedup of Olive over
Ivan for each individual problem instance. In each of the sub-figures in Fig. 5, the red line signifies
a speedup of 1, namely, equivalent performance between Olive and Ivan, and so the points above
the red line are the problem instances in which Olive outperforms lvan.

First, by observing Fig. 5 in most of the benchmark models, our proposed Olive achieves a higher
efficiency than Ivan for many problem instances. In 13 out of 15 models, there are problem instances
for which Olive achieves more than 10X speedup; specifically, in MNIST,, with Quant(Int8), the
speedup achieved by Olive can be up to more than 400X and in MNIST 4 with Prune(12%), the
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Fig. 6. RQ2&RQ3 — The breakdown result about the speedup of Olive® and OliveP over Ivan respectively, for
violated and certified verification problem instances

speedup can be around 120Xx. Moreover, in MNIST,, with Prune(7%), MNIST 4 with Prune(7%),
OVAL21gpse with Prune(0.1%) and OVAL21gasg with Prune(1%), we can observe a significant number
of problem instances for which Olive performs much faster than Ivan, and a big portion of these
instances take more than 10 minutes for their verification, which signifies that they are complex
verification problems. In practice, given a set of problem instances whose results are unknown
beforehand, this efficiency improvement can help practitioners to quickly conclude the verification
for many problem instances and certify a much greater number of problem instances, especially in
the case when the problem instances are complex and so their verifications are expensive.

Second, by Fig. 5, we also find that in these problem instances, there are few instances for which
Olive takes more time. Though we can observe some cases, e.g., in MNIST, , with Prune(7%) and
MNIST. 4 with Prune(7%), the difference is not significant. There are several reasons that can cause
the situation, e.g., our counterexample potentiality order does not work well due to the difference
between two networks. This confirms our conjecture that while Olive can achieve better efficiency,
especially when problems contain counterexamples, it can at least achieve similar performance
with Ivan in general cases where there exist no counterexamples.

RQ2 How does Olive perform for violated and certified verification problems respectively?

To understand the performance of Olive under different cases, In Fig. 6, we show the breakdown
results of Olive for the problem instances where there exist counterexamples (i.e., violated problem
instances) and where there exists no counterexample (i.e., certified problem instances). For each
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benchmark model, we produce box plots that present the speedup rates of Olive® and Olive®, over
Ivan baseline for each individual problem instance, and the left plot in each sub-figure is the results
for violated instances, and the right plot in each sub-figure is the results for certified instances.

By observing Fig. 6, we can further confirm our conjecture that Olive performs significantly
better than Ivan in the problem instances where there exist counterexamples, and its performance
is as good as Ivan in the certified problem instances. In Fig. 6, for all of the benchmark models, it is
evident that the speedup rates for violated instances are significantly better than that of certified
instances. While in most cases the distributions of speedup for certified instances are around 1, i.e.,
the performances of Olive for those instances are similar with Ivan, the distributions of speedup
for violated instances are much greater than 1, signifying the superiority of Olive for these violated
problem instances in terms of efficiency.

First, the performance advantages over the violated instances demonstrate the effectiveness
of our proposed counterexample potentiality order, which manages to infer the most suspicious
sub-problems and guides our search to prioritize the verification of those sub-problems. Second,
even with the certified problem instances which do not contain counterexamples, our approach
does not diminish the verification performance, because in this case, the only difference of Olive
with Ivan involves the order they visit the necessary nodes suggested by the template tree; however,
for both of the approaches, it is necessary to visit all the leaf nodes in the template tree to guarantee
the soundness of the verification approach, so it does not lead to a notable performance difference.

RQ3 Which strategy of Olive can achieve better performance?

To compare the performance between Olive® and Olive®, we take a further look into the perfor-
mance evaluation that has been done for RQ1 and RQ2.

In Fig. 5, we observe that both Olive® and Olive® have many points above the horizontal line of
speedup 1, which indicates that both Olive® and Olive” hold many problem instances for which
they outperform Ivan. We then count the number of the problem instances which significantly
outperform Ivan for Olive? and Olive® respectively. We find that, first, in many benchmark models
the performances between Olive® and Olive? are comparable, e.g., in the model MNIST 4 with
Prune(12%) and in the model OVAL21yrpe with Prune(1%); moreover, in general, Olive® outperforms
Olive® in many different cases. For instance, in model OVAL21gase with all different weight pruning
options Prune(0.1%), Prune(1%), and Prune(3%), there appear a cluster of points of Olive” that
outperform lvan while there is no Olive® in the surroundings. These results show the performance
advantages of Olive® over Olive®, and such superiority can be attributed to the balanced strategy
of Olive® that does not focus on exploitation of suspicious sub-problems only.

Fig. 6 provides another perspective to view this research question. First, we can confirm our
observation that there is no evident performance difference between these two approaches in
both violated problem instances and certified problem instances. Specifically for violated problem
instances, such performance differences are also very small, and this can be due to that, under the
specified parameters, both weight pruning and quantization do not trigger a big difference between
the original model N and the updated model N*. Second, the performance differences we observed
in Fig. 5 are mainly from individual problem instances, while in terms of statistic metrics such as
average and median of the speedup, the differences between Olive® and Olive® are not evident.

RQ4 How do different hyperparameters influence the performance of Olive®?

Recall Alg. 3 for Olive®; there are multiple hyperparameters that can influence the performance
of Olive®, including C, « related to progressive widening, ¢ related to UCB1, and ¢ related to reward
computation. To understand how these hyperparameters influence Olive®, we randomly select 25
instances from each of the 15 models (including all of the models with different architectures, under

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 83. Publication date: April 2025.



Efficient Incremental Verification of Neural Networks Guided by Counterexample Potentiality 83:21

8| mmm Ivan
= Default X
7 Reward 6.81x 6.82x
= UCB1

6 W

7.67x 7.64x 7515 7.64x 7.58x 746x

Relative Speedup

I
R
@

&

Fig. 7. RQ4 - The performance of Olive? under different settings of hyperparameters

all different model alteration methods), leading to 375 instances in total. These instances encompass
both certified and violated cases, and also some cases not solved by any approach, because they are
still possible to be solved by the variant approaches.

In this study, we first have a Default configuration of Olive®, as being used in previous RQs. The
default values of hyperparameters are (o, C, o, ¢) = (0.5,1.2,0.5,0.2), which are obtained empirically
to achieve balance between exploration and exploitation in different phases, based on existing
literature [Browne et al. 2012]. Then, we vary all of the hyperparameters with respect to Default,
and change one hyperparameter at a time, while keeping others at their default values, such that
we can study the influence of the particular hyperparameters on the performance of Olive®.

Table 3 summarizes the hyperparameter settings in our  Table 3. Hyperparameter settings
study, which lead to different variants of our approach. The
first column gives an ID to lvan baseline and the variants of  Variants Rel. params Value

our approach; specifically, the prefixes of the IDs indicate the ivan - -
Default (a,C,0,¢)  (0.5,1.2,0.5,0.2)

components of Alg. 3 being varied in each variant, including Rewbepth o )
“Rew” (reward computation), “UCB1” (the UCB1 algorithm)  RewBound (o) 1
and “PW” (progressive widening). The second column and ~ JCE16xplot EC; o
alance C .
the third column respectively identify the hyperparameters  ucpiExplore (0) 1
being varied and the values of the hyperparameters in that =~ PWExplorel (@0) ©05,2)
K A A PWExplore2 (a,C) (1,1.2)
configuration. In particular, for the Default configuration as  pwaalance (@.0) 0.2,1.2)
shown in the second row of Table 3, we list out all of the four _PWExploit (0.©) ©05,05)

hyperparameters that can be varied by different variants and the default values for these hyper-

parameters; for the variants (after the second row), we only show the relevant hyperparameters

being changed with respect to Default, and the value of the hyperparameters after change.

The comparison between different variants of Olive® and Ivan is presented in Fig. 7. First, we
can observe that, the range of speedup is between 5.33x (by RewDepth) and 7.67x (by RewBound),
which exhibits a consistent performance advantage of Olive® over Ivan. Specifically,

e RewBound, which defines reward purely by approximated lower bounds, outperforms the default
configuration; in contrast, RewDepth, which defines reward purely by node depth, underperforms
the default configuration. First, the result suggests the effectiveness of approximated lower bounds
in guiding the search of counterexample. While this may suggest that defining rewards purely
by approximated lower bounds is good, the merit can be attributed to a “balance” flavor of that
setting, because approximated lower bounds are regardless of node depth. In general cases, the
optimal ratio between these two attributes may still depend on concrete problems.

o Different settings regarding UCB1 perform very similarly, and all of them slightly are comparable
with the default setting. In particular, UCB1Explore exhibits the worst performance, which
indicates that too much emphasis on exploration may not bring good performance.
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Fig. 8. RQ4 - The distributions of solved instances by variants of OliveP, in different speedups and time costs

o Different settings regarding progressive widening are also comparable with the default setting,
but PWExploit can be a bit worse. This is expected, because by PWExploit, the progressive
widening is too greedy and does not often expand a new arm, thus missing the chance of finding
a counterexample in other arms than the one suggested by the template.

To further study the performances of different variants, we plot a heatmap for each variant that
shows the distributions of the numbers of solved instances by different variants in different ranges
of speedups and time costs. The results are presented in Fig. 8. Compared to Default:

o RewDepth shows a slight improvement (49 instances in 0-100s) in quick solutions, due to its
greediness, but its effectiveness diminishes for longer-running instances with only 14 solved in
the 200-400s range, which suggests a limitation in capturing problem complexity.

e RewBound exhibits enhanced performance for medium-difficulty problems, solving 42 instances
in 0-100s and notably 18 instances in the 200-400s range, indicating that defining reward in this
way provides effective guidance for more complex problems.
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Table 4. RQ5 - Performance change (in terms of average speedup over BaB) of our proposed approaches on
OVAL21gase and OVAL21pgep, with the increase of the percentage of weight pruning

‘ Ivan ‘ Olive® ‘ Olive® ‘ Ivan ‘ Olive8 ‘ Olive®
Prune(0.1%) | 1.70x | 2.35x | 2.95% Prune(0.1%) | 1.79 x | 2.53x | 2.85%
Prune(1%) 1.73% | 213X | 2.86X Prune(1%) 1.78x | 2.77x | 3.40%
Prune(3%) 1.69% | 2.12x | 2.71x Prune(3%) 1.84%X | 2.68X | 2.85%
Prune(7%) | 0.07x | 0.07x | 0.07x Prune(7%) 0.13% | 0.13x | 0.13x
Prune(12%) | 0.02x | 0.02x | 0.02x Prune(12%) 0.03x | 0.03x | 0.03x

o The different variants regarding UCB1 show consistent performance across different settings,
which is consistent with the observation in Fig. 7. In particular, UCB1Balance outperforms
Default for relatively simple problems, resulting in 55 instances solved in 0-100s.

e PWExplore1 shows remarkable efficiency for the most challenging problems by solving 52
instances in 600-1000s, while PWExplore2 excels in quicker solutions with 46 instances in 0-100s
and still performs excellently for medium problems with 15 instances in 400-600s. This result
indicates that the strategy that favors exploration is generally useful in progressive widening.
In contrast, PWBalance performs well for quick solutions by achieving speedups over 10x for
46 instances in the 0-100s, and PWExploit solves 41 instances in 0-100s but only 26 instances in
200-400s. This stresses that different settings of progressive widening can significantly impact
the efficiency of algorithm for problems of different complexities.

RQ5 How is the performance of Olive subject to the similarity of N* to N?

In this RQ, we aim to assess the level of similarity between the original network N and the
updated network N*, within which our proposed approach Olive can still be effective. To clearly
show the influence of similarity to the effectiveness of Olive, we select the problem instances
w.r.t. the models OVAL21gpse and OVAL21peep from the dataset of CIFAR-10, because these models
have more complex architectures and consist of a great number of neurons and weights, such that
applying weight pruning to these models can lead to a more significant change of model behavior.

Our evaluation result is presented in Table 4. In both sub-tables of Table 4, the first column shows
the parameter used in weight pruning, namely, the percentage of the weights that are pruned.
The greater this value is, the less similarity between the produced network N* and the original
network N. The table shows the average speedup of the proposed approach Olive w.r.t. the BaB
baseline approach, over the solved problem instances. We also present the results of the baseline
incremental verification approach Ivan for a comparison.

By observing Table 4, we find that with the increase of dissimilarity between the two networks,
it is evident that the performances of our approaches Olive? and Olive” decrease. For the problem
instances of OVAL21gasg, such decrease is monotonic, while for the problem instances of OVAL21pggp,
there is also a same trend. Note that the Ivan baseline also demonstrates a similar phenomenon,
showing that sufficient similarity between two networks is a necessary condition for incremental
verification to be effective. Specifically, for the selected models OVAL21gasg and OVAL21pegp, both
require a similarity such that the weight pruning percentage should be lower than 3%; otherwise,
incremental verification approaches do not perform as well as BaB approach.

On the one hand, this observation confirms the usefulness of the template reuse strategy in
our framework. Indeed if the two networks are not similar enough, the template cannot provide
meaningful information to guide the verification of the new network N* and so the performance
of Olive can be severely diminished, as shown in Table 4. Moreover, the result also suggests that
ensuring the similarity between two neural networks is a precondition for applying incremental
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verification in practice. Determining the similarity between two networks may require domain
expertise of practitioners, and the systematic approach for doing this is left as a future work.

6 Related Work

In this section, we discuss related works, from the aspects of classic neural network verification,
testing approaches, incremental verification, and a related technique called differential verification.

Neural network verification: Neural network verification has been actively studied in the past

years, as indicated by the survey papers [Liu et al. 2021] and the annual competition for comparing

the performances of verification tools [Brix et al. 2023a,b]. To summarize, mainstream verification
approaches can be roughly categorized to the following two classes:

e Exact approaches verify a neural network by performing an exact encoding or comprehensive
exploration of state space. For instance, one such an approach is by encoding the neural network
inference logic to be mixed integer linear programming (MILP) constraints [Cheng et al. 2017;
Fischetti and Jo 2018; Tjeng et al. 2018]. Another line of these methods include Reluplex [Katz
et al. 2017, 2019], which implements an SMT solver dedicated to neural network with ReLU
activation functions. These approaches are often complete, but they may not be very efficient,
and can severely suffer from the scalability issue.

o Approximated approaches [Singh et al. 2018, 2019; Weng et al. 2018; Zhang et al. 2018] pursue
an over-approximation of the original reachable region of the network, to assess whether the
approximated region violates the specification. These approaches often sacrifice completeness,
but since the computation of over-approximation is much faster, they are superior in scalability.
There are many works [De Palma et al. 2021a; Lan et al. 2022; Ma et al. 2024; Miller et al. 2022b;
Wu and Zhang 2021; Zhang et al. 2022] that aim to improve the precision of over-approximation
to achieve better completeness. There are also works [Elboher et al. 2020; Yang et al. 2021] that
adopt CEGAR to refine the over-approximation to improve verification precision.

Recently, the BaB paradigm [Bunel et al. 2020; De Palma et al. 2021b; Isac et al. 2022; Kouvaros and

Lomuscio 2021] has been widely adopted as a complement for the incomplete but fast approximated

approaches. It decomposes the verification problem into sub-problems whenever an approximated

verifier reports a spurious counterexample, and so it can guarantee both soundness and completeness
of the verification approach. There are various approaches that aim to improve ReLU selection in

BaB, e.g., DeepSplit [Henriksen and Lomuscio 2021], FSB [De Palma et al. 2021b]. As mentioned

in §3.2, our aim is to change how BaB explores the tree, thus orthogonal to that line of works.
Although approximated approaches are efficient for neural network verification, their results

can remain inconclusive once they cannot find a real counterexample. While verification can be
terminated by finding a counterexample, in practice it is often not easy to achieve this. In [Guo et al.
2021], Guo et al. decomposes the problem and identifies the most suspicious sub-problems where
counterexamples may exist, based on the affinity between different labels. Intuitively, the more
affinitive two labels are, the more misleading they are to classification. This notion of affinity is then
used in their technique as a guidance to eagerly falsify the specification. While the spirit in that
work is similar to ours, we target a different context of verification, i.e., incremental verification,
and our notion of guidance exactly benefits from the specific context we consider, namely, our
guidance comes from the existing verification results for a similar neural network.

Testing approaches: Testing approaches refer to those techniques that are designed to search for
counterexamples. There have been extensive research in this direction, including gradient-based
attacks [Goodfellow et al. 2015; Madry et al. 2018], and search-based approaches [Eniser et al. 2019;
Kim et al. 2019; Pei et al. 2017; Tian et al. 2018]. While our approach also pursues the detection
of counterexamples, the most significant difference from those testing approaches is that our
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approach is sound, i.e., when our approach does not detect a counterexample, it indicates that no
counterexample exists. In contrast, testing or attack approaches cannot provide such guarantee.
When testing or attack fails to find counterexamples, the counterexample may still possibly exist in
the neural network, namely, those approaches are possible to raise false positives.

Incremental verification: Incremental verification emerges as a technique for verification ac-
celeration, and recently it has been increasingly investigated. In [Fischer et al. 2022; Wei and
Liu 2021], shared certificates are used as the proof templates to speed up verification process. In
FANC [Ugare et al. 2022], the proof via linear relaxation for a network is incrementally reused as a
template for accelerating the proof for a similar neural network. Deeplnc [Yang et al. 2023] targets
incremental verification by employing SMT-based constraint solving for incrementally searching
for counterexamples. Ivan [Ugare et al. 2023], the baseline approach used in this paper, is proposed
to reuse the tree generated by BaB during the verification of a similar neural network.

Differential verification of neural networks: A related line of work to incremental verification
is differential verification, which aims to prove the accuracy of a compressed neural network w.r.t.
to the original neural network. Representative works such as ReluDiff [Paulsen et al. 2020a] and
Neurodiff [Paulsen et al. 2020b] rely on approximated methods, such as symbolic propagation [Wang
et al. 2018a] to characterize the difference between two neural networks. Recently, SMT-based
method is also adopted by [Eleftheriadis et al. 2022] to pursue a more precise equivalence relation
between two neural networks.

7 Conclusion and Future Work

In this paper, we propose Olive, an incremental verification approach for neural networks, that
aims to accelerate the verification of a neural network N*, based on the existing verification results
of a similar neural network N. Compared with the existing incremental verification approach,
Olive leverages the information regarding the priority order over the sub-problems, in the sense
that the sub-problems that are more likely to produce counterexamples should be prioritized
in order to terminate the verification process as soon as a real counterexample is detected. Our
experimental results, based on the comparison with two baseline approaches, show the performance
advantages of Olive over the baseline approaches. In particular, Olive demonstrates excellent
efficiency improvement on the verification problem instances that violate specifications, thanks to
its ability of identifying critical sub-problems.

As future work, we plan to further exploit the acceleration of incremental verification, in order
to impel the deployment of neural network verification in industrial practice. One possibility lies in
refining the order of ReLU specification selection, as explored in [Ugare et al. 2023]. Our direction
is to incorporate runtime information to derive a better ReLU specification heuristic to further
improve the efficiency of neural network verification. Moreover, to apply incremental verification
in practice, we plan to investigate the conditions about the similarity between networks, such that
we can understand when incremental verification can indeed improve verification efficiency.

8 Data-Availability Statement

All relevant data that support the findings of this paper are available in the GitHub repository
https://github.com/DeepLearningVerification/Olive.
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